

Computer Learning Lab Program:
© 1981 The Image Producers, Inc.

Licensed to Tandy Corporation
All Rights Reserved.

Computer Learning Lab Program Manual:
© 1981 The Image Producers, Inc.

Licensed to Tandy Corporation
All Rights Reserved.

It is illegal to reproduce this book or the software
used in these lessons for any purpose other than
personal convenience. You cannot resell, distribute
in any form, or conduct any commercial activity
using these materials without permission of the
publisher. Please direct requests, questions, or other
comments to The Image Producers, Inc., 615
Academy Dr., Northbrook, IL 60062.

No liability is assumed with respect to use of the
information herein.

Reproduction or use, without express written per­
mission from Tandy Corporation, of any portion of
this manual is prohibited. While reasonable efforts
have been taken in the preparation of this manual to
assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in
this manual, or from the use of the information
obtained herein.

Please refer to the Software License on the back cover
of this manual for limitations on use and reproduc­
tion of this Software package.

10 9 8 7 6 5 4 3 2 1

Time Response Monitoring and TRM Programming
are registered trademarks of The Image Producers,
Inc.

Computer Learning Lab
for the

TRS-80 Color Computer

By Dick Ainsworth

A Self-Teaching System of
Software, Experiments, and

Programming Guides

llad1e lhaek®

� A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

Table of Contents

How to Use Computer Learning Lab i

SECTION 1
The following introduction and Lessons 1-12
show how to enter programs and how the computer
uses special words to describe each step.

Introduction to Computing . 1
Instruction: PRINT, GOTO
Line Number: ENTER
Program: RUN, LIST

1. Matheniatician . 5
Arithmetic: + - * I =

Keyboard: INPUT

2. Coin Flipper..................................... 11
Random Numbers: RND(X)
Decisions: IF /THEN

3. Guessing Gante . 17
Comparison: MORE>, LESS<, EQUAL =

4. Average Calculator. 23
Program Loop: FOR/NEXT
Formulas

5. Expressway . 29
Graphics: POINT (H,V), PRINT (TAB), CHR($)
Sound: SOUND(F,D)
Motion: JOYSTICK(N)

6. Counting Machine . 37
Counting: FOR/NEXT/STEP

7. Kaleidoscope . 45
Graphics: SET (H,V,C)

8. Decision Maker . 49
Branching: ON I GOTO
Keyboard: INKEY$

9. Area Calculator . 55
Formulas, Special Calculators

10. Interest Calculator 6 1
Printing Tables, Rounding Off Numbers
Integers: INT(X)

1 1. Coloring Box . 67
Graphics: COLOR, SHAPE
Double loops: FOR/FOR, NEXT /NEXT

12. Tinte Machine . 73
Time Delay, Multiple Lines
Comparison: NOT EQUAL < >

SECTION 2
Lessons 13-22 show how your computer can be
programmed to create many different kinds of
games, educational software, music, and art.

13. Probability . 79
Random Numbers, Probability Curves

14. Sorting . 89
Arrays, Data Processing Techniques

15. Temperature Converter 103
Formulas, Special Calculators

16. Cipher .. 113
Program and Game Design

17. Math Teacher. 125
Time Response Monitoring®

18. Hangperson " 139
String Manipulation, Game Design

19. Music Teacher 155
Music Instruction, Game· Design

20. Car Calculator . 173
Branching, Special Calculators

21. Graphics - . e • • • • • • • • • 183
Video Art, Graphics Characters

22. Player Piano 193
Musical Instruments

SECTION 3
Lessons 23-30 illustrate programming guides
that can be copied and used to create many
kinds of software quickly and easily.

23. Menus .. 199
Program Titles and Starting Screens

24. Program Restarts 203
Program Endings with Automatic Res1tart

25. Tinte Delays . 207
Controlling Time Intervals

26. Inputs . 209
Using the Keyboard to Control Programs

27. Music and Sound Effects 215
From Bach t o BANG!

28. Rounding Off Numbers 219
Making the Digits Fit; Printing Dollars and Sense

29. Scoreboards . · 221
Who Won?

30. Dynamic Debugger
Finding and Fixing Problems

Buzzwords
Index .

223

229
231

How to Use Computer Learning Lab

How to Use Computer Learning Lab
This interactive teaching system is not like an ordinary book or class.
The text and tape software are designed specifically for use with all
versions of the TRS-80 Color Computer, your television, and a standard
audio cassette recorder. The programs you enter from the tapes or
from the keyboard appear on the TV and are the illustrations or
pictures for the text.

SECTION 1 contains an introduction to your computer and 12 self­
correcting lessons that show you how BASIC words such as PRINT
and G OTO are used.

SECTION 2 shows how your computer can be programmed to create
games, solve formulas, play music, sort information, and teach. Each
lesson contains a software example and experiments to help you
design and write your own programs.

SECTION 3 includes programming guides and other tools that make
writing programs easier, faster, and more fun.

Look Here for Help
From time to time you may run into a situation you don't understand or
a problem you don't know how to solve. Check this section now so
that you will know what help is here. If you run into difficulty, check
this section again and see if you can find the answer. Here are some
typical problems and their solutions:

Reverse Video simply means that you're typing with letters in reverse -
light letters on a dark background. If this happens, the computer
won't understand anything you type. To change from normal to
reverse letters (or to change back again) ,press and hold down the ISHIFTI
key while you type a zero ([Q]).

0 and 0 may look alike to you, but the letter 0 and the number zero are very
different to your computer. If an instruction won't work, check for an
0 where a 0 belongs. Also, be careful not to reverse the number 1 and
the letter I .

Spaces between letters and numbers are not critical in most instances
with your Color Computer. You can enter PRINT 2 + 3 or enter
PRINT2+3 and the computer will answer: 5. We have used spaces in
front of and behind all command words in the examples. This makes
programs easier to read.

i

ii

How to Use Computer Learning Lab (continued)

Line Numbers must be in the correct numerical sequence for your
program to work. You can use 1 0, 2 0, 3 0 or 1, 2, 3, or 1 00, 1 7 2, 2 03 for
your line numbers. We write programs with line numbers 10, 2 0,30,
etc. so that there will be room for additional instructions. This way,
you could add more instructions numbered 1 4 , 15 , 1 7 between lines 1 0
and 2 0.

Don't Use LET in your programs. If you are familiar with other
versions of BASIC, you might try using a statement such as: LET A=5 .
With COLOR BASIC, the word LET is not necessary and should not
be used. Simply use: A=5.

How It Works
Sections with this title occur through the book. Please include or refer to
these sections whenever you wish to learn more or understand the
material in greater detail.

If you are interested in how the Learning Lab detects typing errors, for
example, you might want to know that special software is recorded on
each Section 1 cassette, along with the program. When you load these
tapes, the computer reads the computer program used in that lesson
and stores it in memory. After each instruction is typed, and the
t:rNTER I key is pressed, the computer compares the input from the
keyboard with the correct instruction. If you have made a typing
error that would prevent the program from running correctly, the
computer shows you the mistake. After a correct program has been
typed, this special software "disappears" and you can run, list, or
modify the lesson.

The Section 1 tapes containing this monitoring feature were
programmed by Jim Amling in assembly language. He also assisted
in creating lesson programs specifically designed to be clear and easy
to understand. Dick and Jim have worked as a design/ programming
team on many other projects, including PINBALL, an Instant-Load
Program Pack for the TRS-80 Color Computer.

ACKNOWLEDGEMENT
Special thanks to Al, Bill, Christal, Copper, Etta, Jan, Jim, Leanne,
Marty, Natsuko, Paula, Phyllis, Sat Tara, and Tom.

Introduction to Computing

Introduction to Computing
This introduction will show you how to communicate with your computer
by typing instructions on the keyboard. You will also create a short
computer program by entering instructions into the computer's
memory. When you run your program, the computer will follow these
instructions exactly.

Experiment 1: HELLO
If your computer, TV, and cassette tape recorder are not already connected
and working, follow your instruction manual for details. When you
turn on your computer and TV, you will see a small square changing
color (called the cursor) and this message:

C O L O R BAS I C
(C) 1 9 8 0 TAN DY
O K

The important things t o notice are the O K and the cursor. They tell you
that the computer is ready and waiting for your next instruction. Now
type this message on the keyboard:

H E LLO

Press the I ENTER I key. When you press I ENTER I, the computer will respond
by printing ? S N E R R O R on the screen. This is an error message
which tells you the computer doesn't know what HELLO means.
There are only a few words in the computer's vocabulary and HELLO
is not one of them.

Now type this instruction, using P R I NT - one of the words in your
computer's vocabulary. To type quotation marks, press ISH I FTl while
you type [Zl. If you make a typing error, press the left arrow key Cl f---1)
to back up and make the correction.

P R I N T " H E LLO"

Now press I ENTER I . This time the computer does what you requested and
prints the word H E L LO on the screen. P R I N T is one of the words in
Color Basic, your computer's programming language.

Experiment 2: Write a Program
A computer program is a numbered list of instructions. Each of these
instructions begins with a number and is similar to the instructions
you just entered. Try this example:

1 0 P R I N T "H E LLO"

1

2

Introduction to Computing (continued)

When you press I ENTER I, the computer stores your instruction in its
memory and moves the cursor down for your next instruction. Now
enter this second instruction:

2 0 G OTO 1 0

When you press I ENTER I, the computer adds the second instruction to the
program stored in the computer memory. Type [b][]�ITJ and press
the I ENTER I key to see the complete program listed on the screen.
Your screen should show:

10 P R I NT " H E LLO"
20 G OTO 1 0

If your screen doesn't match the example, type your instructions again.

The word G OTO is another word or command in your computer's
vocabulary. It is always written as one word and tells the computer
to go to a particular line number to continue running the program.

Here's what your program will do: The computer will read your
instructions in numerical order. When it reads instruction number 10,
it will print H E L LO on the screen. Then it will read instruction
number 20 and again go back to instruction number 10. This will
repeat over and over as the computer prints a constant stream of
H E LLO on the left side of the screen. When you're ready to run your
program, type [B][gl� and press I ENTER I . After you've run the
program, press the red IBR EAKI key to stop it.

Experiment 3: HELLOHELLOHELLOHELLO
List your program again by typing [b][]�ITJ and pressing I ENTER I. Your
screen should show:

1 0 P R I NT " H E LLO"
20 G OTO 1 0

You can change an instruction in a program by entering another
instruction with the same line number. This erases the old instruction,
replacing it with the new one. Now type a new instruction for Line 10,
adding a semi-colon at the end, like this:

1 0 P R I NT " H E LLO" ;

When you press I ENTER I, this new instruction will replace the old Line 10.
You will see the effect of this change when you run your program.
Later, you will learn many other ways to use P R I NT in your programs.

Introduction to Computing (continued)

Check your new program by listing it again. Type [][]�[I] and
press I ENTER I. Your program will now look like this:

1 0 P R I NT " H E LLO" ;
20 G OTO 1 0

Run your new program by typing [B][Q]� and pressing I ENTER I . With the
semicolon added, your computer will print H E LLO over and over
again on the same line. When the printing gets to the right edge of the
screen, it will move down to the next line automatically. You
probably can't see HELLO because it's moving too fast.

You can stop the printing on the screen at any time by pressing
ISH I FTI and the [@! key. Try this now to stop the program and see
what is being printed. Notice that there is no OK or cursor on the
screen. The program has only paused, and you can't enter new
instructions at this time. Now press any other key on the keyboard
to continue printing.

Stop the program by pressing the IBR EAKI key. The blinking cursor
and O K are back again, and you can now enter new instructions.

Experiment 4: HELLO NAME
If you don't see the cursor and O K , press IBR EAKI to stop your program.
Now list it again by typing [g[i]�ITJ and pressing I ENTER I. Your
screen will show:

1 0 P R I NT " H E L LO";
2 0 G OTO 1 0

This time you will add a new instruction to your program between Lines
10 and 20. Line numbers such as 10, 20, and 30 are often used because
this leaves room between these lines to add new instructions.

You can use an added instruction to print any name you like. Notice
that I have used a space before and after the name and that there is a
semicolon at the end. This keeps all the letters from running together.
Now think of someone you would like to say hello to and put their
name in a print instruction, like this:

1 5 P R I NT " LEAN N E ";

Now type [g[i]�[!] and press I ENTER I again. Your screen should show:

1 0 P R I NT " H E LLO" ;
1 5 P R I NT " LEAN N E ..
2 0 G OTO 10

3

4

Introduction to Computing (continued)

Now the computer will print H E L LO , leave a space, print the name you've
picked, leave a space, and repeat as before. Try it by typing !B][Y]�
and pressing lENTERI . You can pause by pressing IS HIFTI and !@] , and
then continue by pressing any key. You can also stop your program
by pressing IBR EAKI .

Type �IE� and press I ENTER I . This removes your program from the
computer's memory. Now experiment on your own by writing a short
program, using P R I NT and G OTO instructions. You can put anything
you like inside the quotation marks and print it on the screen. Here's
an example of an interesting pattern:

1 0 P R I NT " #------";
20 G OTO 1 0

Try printing other patterns with your program by changing Line 10 or by
adding more lines. Use [1][!]�[!] to check your program and see any
changes, then use [B][Y]INJ and see what your program does. When
you've finished experimenting, press IBR EAKI to stop and go to Lesson 1 .

Lesson 1 : Mathematician

Lesson 1: Mathematician
Arithmetic: + - * I =

Keyboard: I N PUT

In this lesson you will use the calculating power of your computer to
solve arithmetic problems. You will begin by typing in a short
program that adds, subtracts, multiplies, and divides two numbers.

Begin by loading Computer Learning Lab and Lesson 1 from the cassette
by following this procedure:

1. Place the cassette in the recorder, rewind, and press PLAY .

2 . Type [g[][QllAJ[QJIMJ and press I ENTER I . When the program starts
loading you will see a blinking F and the word: C O LO R M O N .

3. When you see O K and the color cursor, press the STOP button on the
tape, then type ���[g and press I ENTER I .

4 . Follow the directions on the title frame for Lesson 1 .

Enter Mathematician
Enter this program into your computer by typing these eight instructions
on your keyboard. Remember to press the I E NTER I key after you finish
typing each line. If you make a typing error, you can back up to
correct it by pressing the left arrow key (I f-1) . When you press the
IENTERI key, Computer Learning Lab will automatically check the line
you've typed and show you any errors. To correct a line, just type it
over again and press I ENTER I .

If you're in a hurry you can type !AJ[Q][I][Q] and press I ENTER I , and
Learning Lab will enter the program for you.

1 0 I N P UT "A";A
2 0 I N P UT "B" ; B
3 0 P R I NT "A +B = ";A+B
40 P R I NT "A-B =";A-B
50 P R I NT "A*B =":A*B
6 0 P R I NT "A / B =" ; A / B
7 0 I N PUT "GO AGA I N (Y, N)"; K $
8 0 I F K $ ="Y" G OTO 1 0

5

6

Lesson 1: Mathematician (continued)

Run Mathematician
After you've entered all eight lines of your program into the computer,
type [B][Q]INJ and press I ENTER I. The computer will print A? on the
screen. Type [ID and press the I ENTER I key. The program will ask for
the second number by printing B ?. Type [1J and press I ENTER I again.

The computer will print four simple arithmetic problems and their
answers on the screen, using 5 for the letter A and 2 for the letter B .
Notice that the computer uses an asterisk (*) for the multiplication
sign and a slash (/) to show division.

A+B = 7
A -B =3
A * B = 1 0
A / B =2 . 5

After the problems and answers are printed on the screen, the program
will ask if you want to go again. Press IY] and then press I ENTER I to
signal yes.

When the computer asks for number A , type �][§] and press I ENTER I . Then
type �[I] for B and press IENTERI again. The computer will print the
answers, as before.

Cbntinue entering pairs of numbers and seeing the results. You can use
numbers with decimals such as 21 .5 and 13.03, if you like. If you type
a zero for B, the computer will signal an error, as explained in
Experiment 1 .

How Mathematician Works
This section goes into more detail about your computer and explains what
is happening when you run the program. You can continue with this
lesson at this time, or go on to Lesson 2 and see how random numbers
are used in programs.

To learn more about this program, stop it and list the instructions on
the screen. After you've finished calculating numbers, type ffi!I and
press !ENTER I to signal no when the question GO AGA I N (Y,N) ?
appears. This will stop the program. Now type [[][][S]II] and press
I ENTER I to list the program on the screen. T

The flowchart diagram on page 10 shows what's happening when your
program runs. Follow the chart and see if it helps you understand
how this program works. The program uses the letters A and B to
add, subtract, multiply, and divide two numbers. When you enter two
numbers fr.om the keyboard, the computer sets these letters (called
variables) equal to the values you type.

Lesson 1: Mathematician (continued)

Next, the computer does the arithmetic and prints the answers on the
screen. You see the numbers you typed added, subtracted, multiplied,
and divided.

The question GO AGAI N (Y. N) ? gives you an opportunity to repeat the
program if you choose. This decision point in the program is shown
by a diamond shaped box in the flowchart. If you type the letter IY], the
program goes to Line 10 and repeats. If you type �, the program
stops .

If you are interested in writing your own programs, follow the line-by­
line description to see how each of the instructions works together in
creating the program you've been using.

LI N E 1 0 prints A? on the screen. The letter A is set equal to the number you
type on the keyboard.

L I N E 2 0 prints B ? on the screen and sets B equal to the number you
type.

L I N E 3 0 prints A+B = and then prints the value of A plus B .

L I N E 4 0 prints A-B = and the value of A minus B .

L I N E 5 0 prints A * B = and the value of A times B .

L I N E 6 0 prints A / B = and the value of A divided by B . Notice how the
computer uses the symbols +. -. * ·and I for addition, subtraction,
multiplication, and division.

L I N E 7 0 prints a message on the screen so that you can indicate whether
or not you wish to try another problem. The variable K $ is set equal
to the letter you type on the keyboard.

L I N E 80 sends the computer back to Line 10 if the letter you type is a IY].
I f you type any other answer, the program stops.

Experiment 1: Computer Messages
The computer is designed to print a message if it cannot follow your
instructions. These messages are called Error Codes and they can be
very helpful in understanding what might be wrong. In this program
it's possible to make an error by entering a zero for letter B. When the
computer tries to divide by zero, it will print an error message
because division by zero won't work, even with a computer.

7

8

Lesson 1 : Mathematician (continued)

Run your program again by typing IBJ[Q)� and pressing I ENTER I.
Type any number for A and press the I ENTER I key. Enter a zero for
B by typing [Q] and pressing lENTERI . When the computer gets to
Line 60 and tries to divide by zero, it will stop and print: 7 /0 E R R O R
I N 6 0 . This means that you tried to divide by zero in Line 60.

Now try a different mistake, and get a different error message. Run
your program again by typing IBJ[g]� and pressing I ENTER I , as
before. This time, enter a letter instead of a number when the
computer asks: N U M B E R A =? . The message ? R E D O means do it
again. Now type a number, press I ENTER I.

Experiment 2: Scientific Notation
For very large or very small numbers, your computer uses a special
method for showing how many zeros there are. Run your program
again and try these numbers for A and B to see an example:

N umber A= 500000

N umber B= 3 0 0000

The correct answer for 500000 times 300000 is 150000000000. The computer
prints this number and all large numbers in Scientific Notation, like
this: 1 . 5 E + 1 1 .

Actually, the number 150000000000 and the number 1 .5E+ 1 1 are equal to
the same value, even if they are written differently. If you start with
the number 1.5 and move the decimal point 1 1 spaces to the right, you
will get 150000000000.

To convert from scientific notation to regular numbers, just write the
number to the left of the letter E, then move the decimal point as many
times as the number on the right. In this example, the number to the
left of the E is 1 .5 and the decimal point is moved eleven places to
the right (+ 1 1) to create: 150000000000.

Try this example:

N U M B E R A= 5

N U M B E R B = 4000

This time the division created a small number and the computer printed it
in scientific notation. The answer for 5 / 4000 is 0.00 125 and the
computer printed this number as 1 . 2 5 E -0 3 . If you write 1 .25 and move the
decimal point three places to the left (-03), you will get the same
answer: 0.00125.

Lesson 1: Mathematician (continued)

Experiment 3: Command Mode Arithmetic
You don't have to write a program to do arithmetic on your computer.
If OK is on the screen with the cursor (colored square) flashing, you
are in Command Mode. You can type instructions (RUN, LIST,

PRINT), and the computer will do as you ask.

If you don't have the computer in command mode with OK on the screen,
press the red IBR EAKI key in the upper right corner to stop your
program.

Now print the answers to some arithmetic problems with these
instructions. Just type these instructions and press I ENTER I after each
one.

PRINT 2 +3

PRINT 2 * 5

PRINT 1 5 + 3 +6 . 5

Experiment 4: Multiply or Divide, then Add or Subtract
Computers always do multiplication and division first, then addition or
subtraction. Look at this problem and figure out the answer, then let
the computer print the result by typing the instruction and pressing
IENTERI.

PRINT 9 +6 / 3

Did you get the same answer a s the computer? I f you remembered the rule
and divided before you added, you would have said: 9 plus 6 divided by
3 is the same as 9 plus 2, or 1 1 . Get the rule ba.ckwards and your
answer would have been 5 .

If you remember that the computer does arithmetic in this order, you
can't go wrong:

Multiply
Divide
Add
Subtract

Programmers sometimes keep this straight by remembering: My Dear
Aunt Sally.

You can change the order in which the arithmetic is performed by using
parentheses. All operations inside the parentheses are done first. In this
example, the addition inside the parentheses is done, then the number
is divided. The computer adds 9 and 6, then divides 15 by 3.

PRINT (9 +6) I 3
9

10

Lesson 1: Mathematician (continued)

MATHEMATICIAN

LESSON I

KEYBOARD

KEYBOARD

KEYBOARD

10

20

30
40
50
60

70

80

INPUT
A

INPUT
B

PRINT
K $

INPUT
K $

NO

STOP

- NUMBER A = ?

------ NUMBER B = ?

.

-

A+B=
A-B =
AXB=
AIB=

GO AGAIN

(Y, N)?

Lesson 2: Coin Flipper
Random Numbers: R N D (X)

Decisions: I F /TH E N

Lesson 2: Coin Flipper

In this lesson you will see how your computer picks numbers by chance
and how it makes decisions. You will use both of these functions
many times in writing programs.

Random numbers are very useful whenever you're designing a game
or creating a pattern and want the results to be different each time the
program runs. Coin Flipper shows how the computer can simulate
flipping a coin by picking heads or tails by chance.

The ability to make decisions is one of the main advantages that
computers have over other types of machines. In this example the
computer will decide what results to print on the screen after the coin
has been tossed electronically.

Load Computer Learning L�b and Lesson 2 from the cassette with
[g[b][Q]�[Q]IM] and [fil!XJ[fil[g. When you see the program title, press
IENTERI to begin the lesson.

To program your computer to simulate flipping a coin, enter these eight
instructions: If you would rather have Computer Learning Lab enter
the program for you, type �IYJ[!][Q] and press I ENTER I .

1 0 H =O

2 0 T=O

30 C =R N D (2)

40 I F C = 1 TH E N H =H + 1

5 0 IF C =2 TH E N T =T + 1

6 0 P R I NT "H EAD S :"; H ,

7 0 P R I NT "TA I LS:";T

80 G OTO 3 0

Run Coin Flipper
To run this program, type IBJIYJ� and press the IENTERI key. The
computer will print a column for H EA D S and a column for TAI LS
with their current totals . There isn't much for you to do but watch the

11

12

Lesson 2: Coin Flipper (continued)

scores add up. See whether heads or tails comes up more often. Then
press the IBR EAKI key to stop the program.

Run the program again and see if heads or tails comes up more often. If
you run this program many times, or just let it run for a long time, the
average number of heads and tails will be about the same.

How Coin Flipper Works
After you've seen enough, stop the program with the IBR EAKI key. Type
[b]ITJ�[!] and press I ENTER I to list the program on the screen.

The flowchart diagram on page 16 will help you see what the computer
is doing when this program runs. When you first run the program, the
computer sets both heads and tails to zero. Then the computer picks
a random number that's either a one or a two. If it's one, the total
number of heads is increased. If it' s two, the total number of tails is
increased. The score is printed on the screen, showing the total
number of heads and tails .

The program repeats and picks another random number, increases the
total , and prints the score again. E ach time the score is printed, the
data on the screen moves up one line. This program loops or repeats
over and over again until you stop it.

Each line in the program is described below to show how these
instructions work together to simulate flipping a coin.

L I N E 1 0 sets the variable H to zero. This letter is used to store the total
number of heads. We could use any letter we wish, however H is a logical
choice.

L I N E 2 0 sets the variable T to zero. This letter stores the total number of
tails.

L I N E 30 creates a random number that's either a one or a two. The
variable C is set equal to the number that the computer picks. This
variable keeps track of the coin because we are using one for heads
and two for tails.

LI N E 40 makes the first decision: If C equals one, then the computer
increases H , the total number of heads, by one. If C does not equal one,
Line 40 is ignored.

LI N E 5 0 makes the second decision and increases T if the variable C equals
two. If C is not two, this instruction is ignored by the computer.

L I N E 6 0 prints the first half of the scoreboard. The word "HEAD S:" is
printed, followed by the total number of times that heads has come up.

Lesson 2: Coin 14,lipper (continued)

The computer prints the letters inside the quotation marks, then prints
the value of H .

L I N E 7 0 prints the second half of the score with the word "TAI LS : " and the
value of T . After this line is printed, the computer automatically
moves the data on the screen up one line. When the program runs, the
numbers appear to move up the screen while the names do not change
position.

L I N E 8 0 creates a "program loop" by sending the computer back to Line 30
to pick a new random number for C .

Experiment 1 : Change the Loop
Notice that the program loop in Line 80 sends the computer back to Line 30
for another random number. What would happen if the program looped
back to the beginning? It's easy to change Line 80 and find out. Type
this new instruction for Line 80. When you press I ENTER I , this line
replaces the original:

8 0 G OTO 1 0

Now type OC]DJ[ID[I] and press I ENTER I to see if the new program matches
this example:

1 0 H =O
2 0 T = O
3 0 C =R N D (2)
40 I F C = 1 TH E N H =H + 1
5 0 IF C=2 THE N T=T+1
6 0 P R I NT " H EAD S :" ; H ,
7 0 P R I NT "TAI L S : " ;T
8 0 G OTO 1 0

The Computer Learning Lab only monitors your typing while you enter
the original program. If you make an error while trying one of these
experiments, just type your instruction again, and list your program
to check it.

Now run your program and see the change. The program now goes back
to Line 10 and sets H and T equal to zero each time the program loops.
Since the totals always start at zero, the values for H and T are never
larger than one.

If you prefer the original version of the program, change Line 80 back
again. Stop the program with IBR EAKI , type a Line 80 exactly the way that
it was originally, and press I ENTER I to replace the instruction.

13

14

Lesson 2: Coin Flipper (continued)

Experiment 2: Scoreboard
The original program prints the totals on the bottom line of the screen.
This causes the data to scroll or move up the screen each time the
program loops. You can also print data anywhere else you like by
using the P R I NT @.command.

Type carefully because Learning Lab is no longer monitoring your
input to the computer. Add the P R I NT @ instruction to your program
and print the totals over and over again on the line that's next to the
bottom of the screen.

5 5 P R I NT @44 7

When you press I ENTER I, this line is added to your program. Now type
[b]OJ�IIJ and press IENTERI to see your new program. If your added
instruction doesn't match, just type it in again. Your screen should
show:

1 0 H = O
2 0 T = O
3 0 C=R N D (2 }
4 0 I F C = 1 TH E N H = H + 1
5 0 I F C = 2 T H E N T =T+1
5 5 P R I NT @44 7
6 0 P R I N T "H EADS :" ; H ,
7 0 P R I NT "TAI LS : " ;T
8 0 G OTO 3 0

Now run this version and see a scoreboard that doesn't move. Line 55
starts the printing near the bottom of the screen each time, so the
printing doesn't scroll. You can use the P R I NT @ command to print
at other locations by changing the number 44 7 .

Experiment 3: Random Numbers
In this experiment you will see how the random number generator works.
Stop your program with the IBR EAKI key. Now type [Ml§� and press
IENTERI. This clears your old program from the computer's memory.

Now enter this new program. Type carefully and press I ENTER I after each
instruction. Don't forget the semicolon ([I]) at the end of the first
instruction.

1 0 P R I NT R N D (3) ;

2 0 G OTO 1 0

Lesson 2: Coin Flipper (continued)

Now list and check your program. When you run this program it will pick
random numbers between one and three and print them on the screen.
Run it now and see the result. You should see the screen fill with the
numbers 1 . 2 . and 3 .

Press IBR EAKI to stop your program. Type [b][TI[S][!] and press I ENTER I
to see the program on the screen. Now change Line 10 again and
replace the number 3 with some other number. When you run the new
program, the computer will print random numbers between one and
the number you have selected. Pick any number you like, and see
what happens.

If you select the number zero, the random number generator will pick
numbers between zero and one. Try this program and notice that all
the numbers are between zero and one. If you leave off the semicolon
the numbers will be printed on separate lines .

1 0 P R I N T R N D (O)

2 0 G OTO 1 0

Experiment 4: Halt!
With the last program running, press and hold IS H IFTI while you press
the � key. This stops the program. Press any key to start it again.

There's no particular reason why the @ key was chosen for this feature.
If you can remember what it does, this trick makes it easy to stop a
program or a listing and see what's going on without having to use
the IBR EAKI key. One word of caution. If you use the Halt! feature,
you must press a key and start the program again before the computer
will respond to any other commands.

15

16

Lesson 2: Coin Flipper (continued)

COIN FLIPPER
LESSON 2

1 0
20

30

60

70

H=O
T=O

P ICK C= 1

QR C= 2

PRINT
THE

SCORE

80 REPEAT

INCREASE
HEADS
TOTAL

INCREASE
TAILS

TOTAL

------ HEADS: 3 TAILS: 2

Lesson 3: Guessing Game
Comparison: > More Than

< Less Than
= Equal

Lesson 3: Guessing Game

This simple program lets you play a game with the computer. The rules
are simple. When the computer picks a number, you try to guess what
it is. If you guess wrong, the computer will give you a hint.

Load Computer Learning Lab and Lesson 3 from the cassette with
[g[jJ[Q]!AJ[QJIMI and �[&)�[g. Press I ENTER I when you see the title
frame for this lesson, then enter these seven instructions.

In this program, Line 20 is too long to fit on the screen in a single line.
The last few characters will move down to the next line automatically.
So don't press I ENTER I until you've finished typing the instruction.

Now type these instructions carefully, and press I ENTER I after each one.
If you're in a hurry, you can type !AJ[Q][!][Q] and press I ENTER I and
Computer Learning Lab will enter the program for you.

1 0 X = R N D (1 0)

20 I N PUT "G U E S S A N U M B E R (1-1 O)":G

3 0 I F G =X GOTO 7 0

4 0 I F G > X TH E N P R I NT " LE S S "

5 0 I F G < X TH E N P R I NT " M O R E"

6 0 G OTO 2 0

7 0 P R I NT G : " I S R I G HT ! "

Run Guessing Game
Type !B][Q]� and press IENTERI to run the program. The computer will
pick a number from one to ten. Type your guess and press IENTERI
If you're right, the computer prints the number you guessed
and the words IS R I G HT! Guess too high, and the computer prints
L E S S ; guess too low, it prints M O R E .

After you've guessed the answer, run the program again. E ach time the
program runs, there's a new number for you to try to guess. Plan your
strategy so that you can get the answer in the smallest number of
guesses.

17

18

Lesson 3: Guessing Game (continued)

How Guessing Game Works
Stop the program by guessing the right answer or by pressing IBR EAKI .
Now type [][]�[!] and press IENTERI to see the instructions on the
screen. Compare these instructions with the flowchart diagram on
page 21 and see what the computer is doing when the program runs.

When you first run the program, the computer picks a random number
from one to ten. The variable X is set equal to this number. We
could use any letter to store the computer's number, and X is as good
as any.

Now it's your turn. The computer prints: G U E SS A N U M B E R (1 - 1 0)
and waits for your input. The number you type is stored in G (for
Guess) . If your guess is correct, the number is printed with the words:
I S R I G HT! Get the answer wrong, and you'll get a hint before the
program loops back for another input.

Notice that the program loops until G =X then it stops. The only way
to end this program - other than with the IBR EAKI key - is to guess
the right number.

Here's what each instruction does:

L I N E 1 0 sets the variable X equal to a random number from one
to ten.

L I N E 2 0 inputs a number for G and prints G U E S S A N U M B E R (1 - 1 0) .
When you type a number and press I ENTER I, the computer sets G equal
to the number you type.

L I N E 3 0 sends the program to Line 70 if you're correct because G equals X .

L I N E 40 prints the message L E S S if your guess is too high because G is
greater than X (G > X) .

L I N E 5 0 prints M O R E if you're too low because G is less than X(G< X) .

L I N E 6 0 sends the program back to Line 20. If you guess too high or too
low, this instruction takes the computer back for another keyboard
input.

L I N E 7 0 is for winners only. This instruction prints the number you've
guessed and the words I S R IGHT! when you finally get it.

There are several ways you can modify or improve this program. Start
by repeating the next problem automatically and then add some more
features.

Lesson 3: Guessing Game (continued)

Experiment 1: Autostart
You can add a decision at the end so that you won't have to type [B][Q]�
each time you wish to repeat the game. These two instructions will
print a message and give you the option to start again. Type these
new instructions carefully and press IENTERI after each one:

8 0 I N PUT "TRY AGA I N ? (Y, N) " ; A $

9 0 I F A $ ="Y" G OTO 1 0

Type [b]OJ�[I] and press IENTER l to see the modified program on the
screen. Check the added lines; if there are any errors, just enter them
again. Now type [B]IY]� and press I ENTER I to run your new program.
With these two lines your program will cycle automatically. When
you see the message on the screen, type IYJ and press I ENTER I to go
again.

Experiment 2: Clear Screen
Another nice feature is to clear the screen each time the program starts.
The clear screen command ((g!IJ�) will do the trick. This instruction
can be added between Lines 10 and 20, like this:

1 5 C LS

Now run your program again and see if you like this addition.

Experiment 3: Change the Odds
Now that you're getting pretty good at guessing the correct number, let's
make the game a little more challenging. You can make Guessing
Game as difficult as you choose by increasing the range of numbers
used for picking the computer's random number.

The random function in Line 10 can be modified to select a number
between one and fifty with this change:

1 0 X = R N D (50)

Before you try this new program, it's a good idea to also change the
message in Line 20 so that you will know what range to guess, like
this:

2 0 I N PUT "G U E S S A N U M B E R (1- 5 0) " ; G

The computer won't be affected by your message and the program will
work no matter what the words inside the quotation marks are. Notice

19

20

Lesson 3: Guessing Game (continued)

that the possible inputs are enclosed in parentheses in Line 20 (1 - 5 0)
and in Line 80 (Y, N) . This tells the user that a range of numbers from
one to 50 can be used and that Y or N is expected as the answer to
TRY AGA I N ?

Experiment 4: Select the Difficulty
If you would like to be able to select the game's difficulty, you can add
that feature with these modifications:

1 0 I N PUT " D I F F I C U LTY (10- 1 00)" ; 0

1 7 X = R N D (D)

1 9 P R I NT "G U E S S A N UM B E R B ETWE E N 1 AN D"; D ;

2 0 I N PUT G

Here's how your complete program will look with all the changes we've
suggested:

1 0 I N PUT " D I F F I C U LTY (1 0- 1 OO)" ; D
1 5 C LS
1 7 X = R N D (D)
1 9 P R I NT "GU E S S A N U M B E R B ETWE E N 1 A N D ";D ;
2 0 I N PUT G
3 0 I F G =X GOTO 7 0
4 0 I F G > X TH E N P R I NT " L E S S "
5 0 I F G < X TH E N P R I NT " M O RE"
6 0 G OTO 2 0
7 0 P R I NT G ; " I S R I G HT !"
8 0 I N PUT "TRY AGA I N (Y. N) "; A $
9 0 I F A $ = "Y" G OTO 1 0

The print statement in Line 19 is necessary because you want to print a
custom message to let the user know what the range is.

In these experiments you have taken a short, simple program and added
several features. This is a good way to develop a program. It's often
easier to get the central idea working, then add refinements.

GUESSING
GAME

LESSON 3

KEYBOARD

Lesson 3: Guessing Game (continued)

X EQUALS
1 0 COMPUTER'S

20

GUESS

INPUT
G

60 REPEAT

YES

YES

YES

70

GUESS A NUMBER
(1-10)

SCORE

STOP

HINT

HINT

5 IS RIGHT

MORE

LESS

21

Lesson 4: Average Calculator

Lesson 4: Average Calculator
Program loop: FO R /N EXT

Formulas

If you ever have to average a group of numbers, this program can be a
big help. Just tell the computer how many numbers you have, enter
each one, and get the average automatically. The key feature of this
program is its ability to loop or repeat for each input you enter.

Load Computer Learning Lab and Lesson 4 from the cassette with
[g[b][QJIAJ[Q]IMJ and �IXJ�[g. Press IENTERI when you see the title
frame for this lesson, then enter these ten instructions. If you make
a mistake, the lab will show you exactly what to correct. If you would
rather enter the program automatically, type IAJ[g][!J[QJ and press
IENTERI.

1 0 C LS :T = O

2 0 P R I NT " . . . TH E AVE RA GE CALC U LATO R . . . "

3 0 I N PUT " H OW MANY N U M B E R S" ;X

40 FOR L = 1 TO X

5 0 P R I N T "N U M B E R"; L;

60 I N P UT "VALU E" ;Y

70 T =T+Y

80 N EXT L

9 0 A =T /X

1 0 0 P R I NT "TH E AVE RAG E I S" ;A

Run Average Calculator
After you've entered the program, type IB][g]INJ and press IENTERI to
begin. Pick a small number, like � .and then press I ENTER I . The
program will request a value for the first number to be averaged.
Type a value and press I ENTER I again. Continue until you've entered
a value for each of the numbers you wish to average together.

When you've finished, the program will print the average of all the
numbers you've entered. You can use decimals and even negative
numbers in computing the average. Compute several averages. Then
type [JJ[!J�[I] and press I ENTER I to see the complete program on the
screen.

23

24

Lesson 4: Average Calculator (continued)

How Average Calculator Works
The important feature to notice is the program loop that repeats for each
number you input. If you wish to average five numbers, for example,
this loop cycles five times.

E ach time the program loops it will request a number and wait for your
input. Then the value is added to the total. If there are more numbers,
the loop repeats. When the loop has cycled for the number of times
you requested, the program continues with the next instruction and
prints the result.

The F O R statement in Line 40 and the N EXT statement in Line 80 create
the loop. All instructions between these lines are repeated for each
new number to be averaged. The variable X is used to decide how
many times the loop repeats.

L I N E 1 0 is actually two instructions, separated by a colon. This is the
same as:

1 0 C LS

1 1 T=O

You can put several instructions on a line, i f you wish. Since both of
these are used to initialize or start the program, they're typed on the
same line for convenience.

L I N E 2 0 adds a title to the program. The computer doesn't know or care
what is printed inside the quotation marks, but titles make things look
neat and orderly on the screen.

L I N E 3 0 prints a message and sets the variable X equal to the number you
type . This variable is used in the F O R /N E XT loop (Line 40), so the
loop will stop when all numbers have been entered.

L I N E 40 combines with Line 80 to form the loop. The variable L keeps
track of how many times the loop has run. On the first pass, L is set
equal to one. On each successive pass, L is increased by one. When
L is larger than X , the loop stops and the program goes on to Line 80.

L I N E 50 prints N U M B E R and the value of L . This tells you which number
you are entering.

LI N E 6 0 sets the variable Y equal to the number you type.

L I N E 70 adds the value of Y to the total, T. In this way, the numbers you
enter are added together each time the loop circulates . After you've
typed in all the values for Y , their total will be stored in T .

Lesson 4: Average Calculator (continued)

L I N E 8 0 completes the loop that was started in Line 40. When the
computer reads N E XT L , it checks to see if L is greater than X in
Line 40. If not, the L is increased by one and the program returns to
Line 40. If L is greater than X , the loop is finished and the computer
goes to the next line in the program.

L I N E 90 computes the average. Remember that T is the total of all
numbers entered and X is the number of terms.

Experiment 1: FOR/ NEXT
Clear the program from your computer by typing �[ID� and pressing
IENTERI. Now enter this program. Type each instruction carefully
because Learning Lab is no longer monitoring your input and telling
you about any typing errors.

1 0 F O R Q = 1 TO 1 0

2 0 P R I NT 0

3 0 N E XT 0

List your program and check it. When you run this program it will loop
ten times, adding one to the variable 0 each time. When Q > 10, the
loop stops . Run it and see the numbers 1 - 10 on the screen.

Experiment 2: Loop Music
Now enter this program. The loop will operate as before, except that the
variable will start at 30 and increase to 200. Each time the loop cycles,
Z is increased by one.

The command S O U N D is used to play notes from the TV speaker. The
pitch or frequency is determined by Z in the command: S O U N D Z, 1 .

1 0 F O R Z = 3 0 TO 2 0 0

2 0 P R I NT Z

3 0 S O U N D Z. 1

40 N EXT Z

Check your listing for accuracy as before, adjust the TV volume to about
mid range, and run this program. If you would like to experiment
with the S O U N D command, replace the numbers 3 0 and 2 0 0 in Line 10
with two other numbers. The first number must be lower than the
second. Values between 1 and 255 must be used or the program will
not work. List your program, change Line 10 to the values you want,
and run it again to hear the effect.

25

Lesson 4: Average Calculator (continued)

Experiment 3: Other Counters
We use F O R / N E XT loops because they are convenient. There are other
ways to program the same effects. For example, the program above
could also be written like this:

1 0 Z = 3 0

2 0 P R I NT Z

3 0 S O U N D Z. 1

4 0 Z=Z+ 1

5 0 I F Z < = 2 00 G OTO 2 0

Try this program and see that it produces the same effect a s the
F O R / N EXT loop. The variable Z begins at 3 0 and increases to 2 0 0 ,
creating a rising pitch. When Z is increased to 201 , the I F condition in
Line 50 is not met and the program stops.

Experiment 4: Auto Average
In Average Calculator you had to decide how many numbers you
wanted to average together. With this program you can input as many
numbers as you want, then get the average.

One way to stop and average all the inputs is to check for a special
number. In this example we use the number 9 9 9 to tell the program
that you're through and would like the answer. If you are averaging
grades, for example, you could enter as many as you like. When you
enter the number [ID[ID[ID for a grade, the program will realize that
you are through and would like the average of all grades entered so far.

Clear your computer with a ��� command, then enter this
program carefully. When you've finished, type [b][I]�[I] and press
I ENTER I to check it.

Learning Lab is no longer checking your typing. If you make an error
in one of the instructions, just type it again and press I ENTER I to
replace it in the program.

1 0 C L S :T=O : N = O
2 0 I N P UT 'VALU E";V
30 IF V= 9 9 9 G OTO 7 0
4 0 T=T+V
5 0 N = N + 1
60 G OTO 2 0
7 0 A =T / N

8 0 P R I NT "TH E AVE RAGE I S" ;A

261--

Lesson 4: Average Calculator (continued)

List your program and check it carefully. Then run it and enter several
numbers. When you want to know the average, enter the number [IDrn:Jrn:J .
This signals the computer to go to Line 70 where the average is
computed and printed.

After you've run this program a few times, see if you can draw a
flowchart diagram to show how it works. The variable T stores the
total of all numbers entered and N stores the number of terms that
have been added so far. The decision in Line 30 should be drawn in a
diamond shaped box with two outputs. If V equals 9 9 9 , one path is
followed. If V is not equal to 9 9 9 , then another path is taken by the
computer.

27

28

Lesson 4: Average Calculator (continued)

AVERAGE
CALCULATOR

LESSON 4

KEYBOARD

KEYBOARD

CLEAR
1 0 SCREEN

& TOTAL

20 TITLE

30

40

50

60

INPUT
x

P RINT

INPUT
L

?O ADD TO
TOTAL

80

YES

90
1 00

COMPUTE
AVERAGE

STOP

. . . THE A VE RAGE -
CALCULATOR . . .

HOW MANY NUMBERS?

NUMBER I VALUE?

THE A VE RAGE IS 10

Lesson 5: Expressway

Lesson 5: Expressway
Graphics: P O I NT(B ,V) , P R I N T TAB , C H R $ (N)

Sound: S O U N D (F, D)

Motion: J OYSTK (N)

This program and your computer create a video game. You will use the
right joystick to control a car on the expressway. The computer
shows you a bird's-eye view from above the car as you zig and zag,
trying to miss the traffic. Each time you collide with another car or
run into the wall on either side, you will add points to your score. You
can try and hit as many cars as possible, or see how long you can go
without ha�ing an accident. The computer will create an endless
stream of traffic for you to dodge and will give you a printout of your
current score.

If you don't have joysticks, there is a special addition to this program
that lets you use the arrow keys on the keyboard instead of the
joystick. See Experiment 4.

Load Computer Learning Lab and Lesson 5 from the cassette with
[g[][Q]�[Q]MI and �OO�[g. To test your driving skill against the
computer, enter these twelve instructions . If you would rather enter
the program automatically, type �[Q]ITJ[Q] and press I ENTER I .

1 0 X = 1 5

2 0 T = O

3 0 A = I NT(J OYST K (0) / 2 2) - 1

4 0 X=X+A

5 0 Y = PO I NT(X * 2 , 1 6)

6 0 I F Y > O TH E N X =X-A:T=T +1 : S O U N D 1 5 0 , 1

7 0 P R I NT @2 5 6 +X. C H R $ (1 2 8) ;

80 P R I NT @ 4 8 0. T; TA B (4) C H R $ (2 0 7) ;

9 0 P R I NT TAB (R N D (2 6) +3) C H R $ (17 5) ;

1 00 P R I NT TAB (3 0) C H R $ (2 0 7)

1 1 0 G OTO 3 0

29

30

Lesson 5: Expressway (continued)

Run Expressway
To run this program, type [B][Y]� and press the I ENTER I key. Use the
right joystick and control your car by moving left or right. (If you
don't have joysticks, please go to Experiment 4, page 34 now and
modify the program so that the arrow keys on the keyboard can be
used for driving.)

The program is designed so that the car on the screen "drives" much
like a real car. Notice that the car will be moving left, not moving, or
moving to the right. If the joystick is near the center, the car goes
straight. Moving the joystick to either side causes the car to turn and
continue turning until the stick is centered again.

Adjust the volume control on your TV to hear the "BEEP" each time
you hit another car or the edge of the expressway.

The numbers on the left show your score. If your score goes above 9 9 ,
however, the game no longer works properly because the program
only allows for two digits in the number that represents your score.

To stop, just press the !BR EAK! key. Each time you run Expressway
you will start with a clean driving record and zero accidents. To make
Expressway a competitive game, take turns with a friend and see who
will cause the lowest number of collisions in a given time period.

How Expressway Works
Now see how your computer can be programmed to create a video game.
If you haven't already stopped the program, press the !BR EAK! key.
Type [][[]�(!] and press I ENTER I to display a list of the instructions
on your screen. These eleven instructions are all that's required.
Before you learn what each of these instructions does and how they
work together in the game, look at the flowchart diagram on
page 35 and see what the computer is doing while the game runs.

You have already seen that the car begins in the middle of the screen
and that the score starts at zero when you type [B][QJ� . This step is
shown in the first block in the diagram. The rest of the program is
inside a loop; that is, the steps that begin with the joystick input and
go through the final printing on the screen are repeated over and over
again. This cycle or loop runs continuously until you press !BR EAK!
and stop the program.

E ach time the loop runs, the computer moves the cars and prints a
new picture on the TV, much like an animated cartoon or a movie.
Now let's look at the loop in detail and see how each frame in this
"movie" is made. The program begins each frame by checking the
joystick to see if you are steering to the left, center, or right.
Depending upon your input, the car may move right or left.

Lesson 5: Expressway (continued)

The first question in the program is "Have you hit anything?" To find
out, the program checks the spot directly in front of your car to see if
it is occupied by a colored block. If you're about to run into another
car or the edge of the expressway, the program moves the car back
again and scores an accident. In this way, you will appear to bounce
as you hit obstacles.

When an accident is scored, the total is increased by one, and a
"BEEP" is played in the speaker. Whether you have hit something or
not, the car is drawn in its new position as the computer prints a blue
box on the screen.

Now, several print commands are used to create the score, the left
edge of the expressway, a new car in a random location, and the right
edge. All of this data is printed on one line at the bottom of the screen.
As this line is added at the bottom of the picture the entire screen
moves up one line.

The effect that causes the expressway to "move" is created by the line
feed after the last line is printed on the screen. This is similar to the
carriage return on a typewriter, rolling the paper up one line. In this
program the line feed moves the picture up one line each time the
program loops. To see how this effect works, just press the I ENTER I
key several times and see the listing move up the screen.

LI N E 1 0 sets the value of X so that your car will begin in the center of
the expressway: 15 spaces from the left edge of the screen. The
variable X keeps track of the car's position. As X changes, the car
moves left or right.

L I N E 2 0 sets the total number of accidents, T , to zero.

LI N E 3 0 sets A equal to the position of the joystick. The variable A
will be 0 if the joystick is near the center, - 1 if the joystick is moved
to the left, and + 1 if the joystick is moved to the right. You can copy
these instructions whenever you wish to use the joystick in other
programs.

L I N E 40 adds the change in direction from the joystick, A, to your
car's position, X. If the joystick is near the center, A equals zero and
X does not change. Move the joystick to either side and X will change
by one position each time the program loops.

LI N E 5 0 examines the point directly ahead of your car and sets Y
equal to the number of any colored block at that location. If the screen
is blank at that point, Y is zero. There are twice as many dots or
locations on the screen with the point command as there are with the
print command. To examine the screen at column X and row 8, (the
location directly below the car) , POI NT(X * 2 , 1 6) is used.

31

32

Lesson 5: Expressway (continued)

L I N E 6 0 is a test to see if you have hit anything. Since Y is equal to
the color number of any object in front of your car, you can test Y and
see if you have had an accident. When the background color is
present, Y is zero. If Y is greater than zero, the point you're
examining is a color other than the background. This means you've
hit another car or the edge. If there is an accident, three things
happen. The joystick input is subtracted from the new location to
keep you from driving through the edge and off the road. The total
number of accidents, T , is increased by one. A "BEEP" is played to let
you know that you've hit something.

L I N E 7 0 prints a black square representing your car. The location 2 5 6
is on line number eight, at the left edge. Adding X to 256 plots a point
on line eight that is X units from the left. The symbol C H R $ is used
with PR I NT to place a colored box on the screen. Three values are
used in this program with C H R $ (1 7 5) printing a blue box, C H R $ (1 2 8)
printing a black box, and C H R $ (2 0 7) printing a white box.

L I N E 80 prints the total number of accidents at location 4 8 0 , which is
the lower left corner of the screen. This is followed by a white square
to mark the left edge of the expressway.

L I N E 9 0 prints a blue square at a random location on the expressway.
This is how the computer generates traffic for you to dodge. The
P R I N T TAB command tabs or moves to the right a certain number of
places from the left margin before printing. In this instruction the
number of tabs or spaces from the left is random so that the new
traffic can appear anywhere on the bottom line.

L I N E 1 00 prints a white box at the right side of the screen, 30 spaces
from the left edge. This box prints the right-hand boundary. Notice
that the semi-colon (;) is not used after this print command. A semi­
colon would suppress or prevent the line feed after each line is
printed. In Lines 70, 80, and 90 the semi-colon is used so that the
screen won't move up automatically. After Line 100 we want the
screen to scroll upwards, so the semi-colon is not used at the end.

LI N E 1 1 0 sends the computer back to Line 30 to read the joystick,
input a new direction, and create the next frame in E xpressway.

Experiment 1: Time Limit
You can make Expressway a competitive game if you add a time limit.
With this change the program will loop for a certain number of times
and then stop automatically. You can compare scores with a friend or
play against the computer for the lowest number of accidents. To do
this , you will need a new variable to keep track of the number of times
the program has cycled. You can use any letter you like, such as C ,
for "clock." Begin the program by setting the clock to zero:

1 5 C =O

Lesson 5: Expressway (continued)

The computer will count each time the program loops if you add this
instruction:

4 5 C =C + 1

Finally, add this test to stop the program after it has cycled 300 times.

1 0 5 I F C > 3 00 TH E N E N D

Run and test the program and see if you like the length of time it runs
before stopping with a final score. If you want to run each trial for a
longer or shorter time, just change the number 3 0 0 in this instruction.

Look again at the flowchart and notice that the first instruction that
sets the clock to zero (Line 15) only operates once, when the program
is first run. The two other instructions that add one to the time and
check to see if the time is up are both inside the program loop.

Experiment 2: Add a Report Card
Add a scoreboard to show the results at the end of the game with these
additions:

1 0 5 I F C > 3 0 0 G OTO 1 2 0

1 �W P R I NT "C O N G RATU LATI O N S . YOU HAD ";T. "AC C I D E NTS"

Now run the program. After 300 frames, the message is printed with
the total number of accidents for that trial.

Experiment 3: Color the Traffic
Multi-colored traffic will replace the blue boxes if you use the random
functions to set the color of the car that is added with each frame.
This single change in Line 90 will do it:

9 0 P R I NT TAB (R N D (2 6) + 3) C H R $ (1 2 7 + R N D (8) * 1 6) ;

The P R I NT TAB works as before and spaces a random number of
squares from the left margin. Instead of printing a single-color box,
however, this new instruction prints a randomly colored box.

Here is a list of the color numbers that are picked in Line 90 by the
instruction (1 2 7 + R N D (8)'* 1 6) :

143 green
159 yellow
175 blue
191 red

33

34

Lesson 5: Expressway (continued)

207 white
223 light blue-green
239 pink
255 orange

Notice that color 143 (green) is the same color as the background.
This green-on-green phantom car can nonetheless be hit, so be careful.

Experiment 4: Keyboard Control
If you don't have joysticks you can use the left and right arrow keys to
control the car's motion. Just type these instructions and press the
I ENTER I key after each one. Adding these lines to your program will
let you use the left and right arrow keys to control the car.

3 0 K $ =1 N K EY $

3 2 A = O : I F K $ =" " G OTO 4 0

3 4 I F ASC (K $) =8 TH E N A =A- 1

3 5 I F ASC (K $) = 9 TH E N A =A+ 1

Line 34 checks to see if a left arrow was pressed. The next instruction
checks for a right arrow. The variable A is adjusted accordingly.

With this addition to the program, the variable A is adjusted with the
arrow keys and with the joystick.

EXPRESSWAY
LESSON 5

1 0
20

30

CAR AT
CENTER

SCORE = O

INPUT
JOYSTICK �--.--;� D IRECTION

40 MOVE
50 CAR

60

Lesson 5 : Expressway (continued)

YES MOVE

70

80
90
1 00

NO

PRINT
CAR

PRINT TOTAL

EDGE

TRAFFIC

EDGE

1 10 REPEAT

CAR BACK

-S

�

CORE

-

- -DJ)

--- - - -- D

-
3 • • •

35

Lesson 6: Counting Machine

Lesson 6: Counting Machine
Program Loop: F O R / N EXT /STE P

In this lesson you will see how to program your computer to count. Since
the computer does many things using numbers, this ability will be useful in
a wide variety of programs.

The method often used for counting up or down is the "program loop ."
With a loop, your computer will repeat some of the instructions in a
program over and over again. The F O R / N EXT commands make it
easy to create loops in your programs. With counting loops you can
increase or decrease numbers easily.

Load Lesson 6 from the cassette using [g[b)[Q][A][Q]M and �l&]�[g.
Enter these 11 instructions yourself, or type [A][Q][I][Q] and Computer
Learning Lab will enter the program for you.

1 0 C LS

2 0 I N PUT "STA RT' ; A

3 0 I N PUT " E N D " ; B

40 I N PUT "STE P"; S

5 0 P R I N T " F O R L =· · :A; "TO" ; B ; "STE P" ; S

6 0 F O R L=A TO B STE P S

7 0 P R I NT L;

80 N E XT L

9 0 P R I NT

1 00 I N PUT "G O AGAIN (Y, N)" ;A $

1 1 0 I F A $ ="Y" G OTO 1 0

Run Counting Machine
When you've entered the complete program, run it. The program begins

by asking you to input a number for the variable START . Type [I]
and press I ENTER I. Next, type the number �IQ] for E N D and press

IENTERI. Finally, input the number m again for STE P and press

I ENTER I .

When you enter the final number, the program will automatically
begin counting from 1 to 50. With the STEP set at 1 , the program
counts by ones: 1, 2, 3, 4, etc.

37

38

Lesson 6: Counting Machine (continued)

This program contains an automatic repeat feature. The computer
will ask you if you wish to go again. Type a IYJ and press I ENTER I to
run the program again. Now enter these values, and remember to
press the I ENTER I key after each one.

START? 1 0

E N D ? 2 0 0

STEP? 5

This time the computer counts from 10 to 200 by fives . Now try
counting backwards. Select !YI to go again and enter the following
numbers. Notice that the START is higher than the E N D and that the
STE P is negative.

START? 2 5 0

E N D ? 1

STEP? -4

One more example will show you how to step by a fraction. When
you try these numbers, the printing will scroll off the screen as the
computer counts from 5 to 70 by .5, or one-half, steps.

START? 5

E N D ? 7 0

STE P? . 5

Try any other combinations you like for the START , E N D , and STE P . If
you select a wide range, the computer can take days to print all the
numbers. To cause the program and the printing on the screen to pause,
just press ISH IFTI and the I@! key. Pressing any other key continues the
program again.

After you've tried several combinations, stop the program by selecting
� when you have the option to repeat.

How Counting Machine Works
The first part of the program clears the screen, inputs the variables for
the counting loop, and prints a remainder on the screen so that you
can see what the START , E N D , and STE P are.

All of the counting is done in the F O R /N EXT loop (Lines 60, 70, and
80). The variable L is used to keep track of the loop. When the
program first reaches Line 60, L is set equal to the starting value:

Lesson 6: Counting Machine (continued)

START. Using numbers from the first example, L would be set to 1 .
We have chosen the variable name A to hold this value. We could
have used any other letter or name, such as "B", "BEGIN," "FIRST,"
or even "JOE."

Then the computer prints the value of L on the screen.

When the computer reads N E XT L in Line 80, it compares L and B . If
L is greater than B , the loop is finished, and the program continues
with the next instruction: Line 90. If L is not greater than B , the
computer repeats the loop by going back to Line 60 and adding the
value of S to L .

After the loop has finished counting, the program continues . The
message G O AGA I N (Y, N) ? is printed, and the variable A $ is set equal
to the letter you type. Type IYJ , press I ENTER I and the program
repeats.

Notice that the variable A is used to store a number, and the variable
A $ is used to store a letter.

LI N E 1 0 clears the screen.

LI N E 2 0 sets the variable A equal to the keyboard input.

L I N E 3 0 sets the variable B equal to the keyboard input.

L I N E 40 sets the variable S equal to the keyboard input.

L I N E 5 0 prints a message to show how the instruction for the
FO R / N E XT loop will look with the numbers that have been entered.

LI N E 6 0 begins the FO R / N EXT loop. The variable L is set equal to A
when the loop begins. Each time the loop operates, the value S is
added to L .

LI N E 7 0 prints the value of L on the screen. The semicolon (:) causes
the next number to be printed one space to the right of this number.

L I N E 80 completes the loop. When the computer reads N EXT L it
returns to the line where FO R L was used. If L is less than or equal to
the final value, it is increased by the number following the word STE P
in Line 60. If L is more than the final value, the computer does not
loop back to Line 60; it goes to the next line in the program.

LI N E 9 0 prints a new line after all numbers have been printed on the
screen. This makes it easier to read the message at the end.

39

40

Lesson 6: Counting Machine (continued)

LI N E 1 00 prints G O AGA I N (Y, N) ? and sets the variable A $ equal to
the letter you type. You could have used K $, B $, M O R E $, or any other
name that ends in a dollar sign to hold the letter you input from the
keyboard.

LI N E 1 1 0 goes to Line 10 and repeats the program if you input the
letter IYJ . With any other input the program stops.

You will use loops like this in many different kinds of programs.
Begin these experiments by adding sound so that the loop is more fun.
Then try writing program loops of your own.

Experiment 1 : Loop Music
Add this instruction to your program, and the computer will play a
note when it prints a number on the screen. The S O U N D command
converts a number between 1 and 255 into a tone. You will use the
variable L to set the pitch of the tone. The duration will be set at 1 .

7 5 S O U N D L, 1

When you press I ENTER I . this new instruction is added to your
program. Type [b][][§][I] and press I ENTER I again, and see that the
new program contains this added instruction.

Adjust the volume on your TV to a normal level. Run the program
and try these inputs:

STA RT? 1

E N D ? 2 5 5

STE P? 1

Experiment 2: More Music
You just heard the full range of the S 0 U N D command. As L varied
from 1 to 2 5 5 , the sound varied from low to high. Try the next loop
and reverse the process. Notice that this time we're only playing
every fifth step.

START? 2 5 5

E N D ? 1

STEP? - 5

Lesson 6: Counting Machine (continued)

Experiment 3: Illegal Action
Now it's time to try something that won't work and see what happens
when you make a mistake. You can't harm your computer by typing
in the wrong instruction. So always feel free to experiment, like this:

START? 1

E N D ? 5 0 0

STE P? 2

When you run this loop, the computer will count to 257 and then print
? FC E R R O R I N 7 5 on the screen. This is an error message from the
computer and it tells you that you have an "illegal function call in
Line 75 ."

This message doesn't mean you've broken the law. It simply means
that you tried to use a number that's out of range for the S O U N D
command. When L reached 257, the command S O U N D L , 1 wouldn't
work because the pitch was out of range. The error message told you
exactly what was wrong.

There are two ways to fix this problem. You can limit the range of the
counting loop to the numbers 1 through 255, or you can change Line
75.

Experiment 4: Make it Legal
Here's a way to keep the numbers for S O U N D between 1 and 255. This
first instruction creates a new variable S N D that converts the number
in L to a number between zero and 254. The next instruction adds 1 to
S N D and uses this for the S O U N D command. In this way, we avoid
the problem of a function call error. Add these lines to your program:

7 5 S N D = L- I NT(L / 2 54) * 2 5 4

7 7 S O U N D S N D + 1 , 1

List your program and check these lines carefully, then run the same
experiment again. This time the sound will stay within range, and
there won't be any messages from the computer.

START? 1

E N D ? 5 0 0

S K I P? 2

41

42

Lesson 6: Counting Machine (continued)

Experiment 5: Space Sounds
When a program doesn't work quite right, we say that it has a "bug"
or a mistake. The problem you had with the FC error is a bug that
you've fixed by changing the program. Now you can count forwards
or backwards and step by any amount you choose, and the program
will always keep the number for the pitch within the correct range.
Try these examples, then experiment with your own ideas:

START? 1 E N D ? 9 0 00 STE P? 5 1

START? 1 E N D ? 9000 STE P? 53

START? 5 0 0 0 E N D ? - 5 0 0 0 STE P? -6 7

START? 5 0 0 0 E N D ? -5000 STE P? - 1 0 1

Experiment 6: Writing Loops
The program for this lesson has shown you how loops operate. When
writing loops for your own programs, you usually won't need the
extra instructions for inputting data and repeating the program.
There are several ways you could duplicate the examples with short
programs.

Clear your computer by typing �[g]� and pressing lENTERI , then run
these programs and see that they duplicate the results of the first
examples in this lesson. We used the variable L in the lesson. You
can use any variable you like, for example:

1 0 FO R Z= 1 TO 5 0
2 0 P R I NT Z;
3 0 N E XT Z

1 0 FO R X = 1 0 TO 2 0 0 STE P 5
2 0 P R I NT X;
3 0 N E XT X

1 0 FO R C O U NT = 2 5 0 TO 1 STE P -4
2 0 P R I NT C O U NT;
30 N EXT C O U NT

1 00 F O R N U M B E R = 5 TO 7 0 STE P . 5
1 0 1 P R I N T N U M B E R;
1 0 2 N EXT N U M B E R

Lesson 6: Counting Machine (continued)

Experiment 7: 99 Bottles
Here is a favorite loop program from my friend Ted Nelson:

1 0 C LS
2 0 F O R N = 9 9 TO 1 STE P - 1
3 0 S O U N D N , 5
4 0 P R I NT @0, N ; " B OTILES O F B E E R O N TH E WALL"
5 0 P R I NT N ; "BOTTLE S O F B E E R . "
6 0 P R I NT " I F O N E O F TH O S E BOTTLES"
70 P R I NT " S H O U L D HAPPEN TO FA LL . . . "
8 0 P R I NT N - 1 ; " BOTTLE S O F B E E R O N TH E WA LL"
9 0 N EXT N
1 00 P R I NT "ALL G O N E ! "

43

44

Lesson 6: Counting Machine (continued)

COUNTING
MACHINE
LESSON 6

KEYBOARD

KEYBOARD

1 0

20
30
40

50

CLEAR
SCREEN

INPUT

START

END

STEP

PRINT

60 LOOP L

70 PRINT L

80

YES

90 PRINT

100
INPUT

A$

STOP

YES

START ' . I
END ? 100
STEP ? I

• FOR L = I TO 1 IO STEP I

I 2 J 4 5 6 - 7 8 9 10 1 1

1 2 . .

GO AGAIN (Y,N)?

Lesson 7: Kaleidoscope
Graphics: S ET(H , V, C)

Color

Lesson 7: Kaleidoscope

One of the most interesting things you can do with your color
computer is to create patterns and designs. Artists who use
computers in their work often program randomness into their art and
use symmetry to create a balanced appearance. In this lesson you will
use a program to create a symmetrical pattern that never repeats.
Randomness is used in forming the design and in selecting the colors.

Load Lesson 7 from the cassette with [g[b][Q]�[Q]IM and [g)[XJ� [g .
Press I ENTER I when you see the title, then enter these nine instructions.
Be sure to press IENTERI after each one. If you want to enter the
program automatically, type �IYJ[I][Q] and press the IENTERI key.

1 0 C LS O : C = 3

2 0 X = R N D (3 2) - 1

3 0 Y=R N D (1 6) - 1

4 0 S ET (X,Y, C)

5 0 S ET (X, 3 1 -Y, C)

6 0 S ET (6 3 -X,Y, C)

7 0 S ET (6 3 -X, 3 1 -Y, C)

8 0 I F R N D (2 0) = 1 TH E N C = R N D (8)

9 0 G OTO 2 0

Run Kaleidoscope
When you run this program, the screen will clear, and a symmetrical
pattern of colored dots will appear. As the pattern builds, notice that
the screen is actually divided into four sections and that the same
pattern repeats in each section. The screen is acting like a mirror
with the pattern reflected in the four corners.

Gradually the colors will begin to change, and the pattern will fill the
screen. You can stop the pattern at any time by pressing IS H IFTI and
the � key at the same time. To continue the program, press any
other key. When you would like to see a different pattern, press
IBR EAKI , type IB]IY]� . and press IENTERI.

45

46

Lesson 7: Kaleidoscope (continued)

How Kaleidoscope Works
We are using the random number generator in the computer to create
the pattern. As the program cycles, a single colored dot is placed in
the top-left section of the screen. Then this position is repeated in
each of the other three sections.

The decision to select a new color is based on a 1 -in-20 probability.
E ach time the program cycles, the computer generates a random
number between 1 and 20. If the number is 1, a new color is picked at
random; for any other number, the color stays the same. This
probability creates, on the average, about 20 dots of any color before a
new color is picked. Actually, since the computer may pick the same
color again, the rate of change is slightly less than this.

The random number generator is used to pick values for X and Y .
Then these variables control the positions of all four dots that are
plotted on the screen.

The S ET command places a dot of any color anywhere on the screen.
The screen is 64 dots or positions wide and 32 dots high.

L I N E 1 0 clears the screen and colors it black (color 0) .

L I N E 2 0 picks a random number for X that is between zero and 3 1 .

LI N E 3 0 picks a random Y between zero and 15.

LI N E 40 plots a dot in the top-left section of the screen. If X and Y are
zero, the dot is in the top-left corner. If both variables are at their
maximum (31 and 15), the dot is next to the center of the screen.

LI N E 5 0 plots a matching dot in the top-right section of the screen.

L I N E 6 0 plots a dot in the lower-left section. This dot is in the lower­
left corner if X and Y are zero and near the center if they are
maximum.

L I N E 7 0 plots a matching dot in the bottom-right section.

L I N E 80 creates a random number between 1 and 20. If this number is
1 , the computer picks a new color number between 1 and 8 .

L I N E 90 sends the computer back to Line 20 to pick two new numbers
for X and Y .

One of the ways you can vary the appearance of this program is to
alter the rate at which the colors change. Increasing the number 20 in
Line 80 will cause the colors to change less often because the odds of
the random number being equal to 1 are less . Here are some other
ways you can modify this program:

Lesson 7: Kaleidoscope (continued)

Experiment 1 : Auto Repeat
Try adding a loop around the entire program. When the loop is finished,
the computer will go to the next line in the program and clear the
screen. Add these lines carefully, then list your program to check it.

1 5 F O R N = 1 TO 1 0 0

9 0 N E XT N

1 00 G OTO 1 0

Here is how your complete program should look:

1 0 C LS O : C =3
1 5 FO R N = 1 TO 1 00
2 0 X = R N D (3 2) - 1
3 0 Y= R N D (1 6) - 1
40 S ET (X ,Y, C)
5 0 S ET (X. 3 1 -Y. C)
6 0 S ET (6 3 -X.Y. C)
7 0 S ET (6 3 -X. 3 1 -Y. C)
8 0 I F R N D (2 0) = 1 TH E N C = R N D (8)
9 0 N E XT N
1 0 0 G OTO 1 0

Now the program will loop between Line 15 (FO R) and Line 90 (N EXT) in a
loop. After the loop has cycled 100 times, the program will go on to Line
100. As you can see, this will cause the program to start over again at
Line 10. Try this change and see if you like the program clearing and
starting over after 100 positions have been plotted.

Now consider changing Line 15 so that the pattern builds for a longer
time before clearing. I prefer the pace when the program cycles 500
times. Try it with this instruction:

1 5 FO R N = 1 TO 500

Experiment 2: Add a Tune
Computer art is not limited to visual effects . Try adding a tune with this
instruction:

7 5 S O U N D 6 *X + 2 0. R N D (3)

With this instruction your program will create a note that varies in
pitch as X varies the position of the dots. The second number after the
S O U N D command determines the duration of the tone. In Line 75 this
duration is set to a random number between 1 and 3 to create a rhythm.

Some people like the tune that this program plays, and some don't.
Try your own recipe and see if you can find a method for generating
computer music that appeals to you.

47

Lesson 7: Kaleidoscope (continued)

KALEIDO­
SCOPE

LESSON 7

1 0

20
30

40

50

60

70

80

CLEAR
SCREEN

PICK X
PICK Y

SET
x, y

SET
X , 3 1 -Y

SET
63-X, Y

SET
6 3 -X, 3 1 -Y

90 REPEAT

0

------- j
3 1

1

0 63

tE

PICK
NEW COLOR

48 L---

Lesson 8: Decision Maker

Lesson 8: Decision Maker
Branching: O N - G OTO

Keyboard: I N K E Y $

Many methods for determining the course of future events are based on
chance. From Tarot cards to I Ching, random events are combined
with intuition to help us see our fate. While the computer is short on
intuition, it's a master of random events.

In this lesson we will use two new commands to create a computerized
information service or advisor. The O N - G OTO command makes it
easy to branch to a wide variety of possibilities in a program. We will
use this capability to create the messages displayed on the screen.
With the I N K E Y $ command we can read a key from the keyboard
without stopping a program. Unlike the I N PUT command, I N K E Y $
lets you type a single key and effect a running program.

Load Lesson 8 from the cassette with [g(b][QJIAJ[QJIMI and [§00[fil[g.
To consult your own computer, just enter these instructions. You can
also type IAJ[Q]!IJ[QJ and press I ENTER I if you would like Computer
Learning Lab to enter the program for you.

1 0 C LS

2 0 P R I NT @ 1 3 3 , " . . . AS K TH E C O M PUTER . . . "

3 0 I F I N K EY $ =" " G OTO 3 0

40 O N R N D (4) G OTO 50 . 6 0. 7 0 . 8 0

5 0 P R I NT @2 3 9 . "YE S " : G OTO 9 0

6 0 P R I NT @ 2 4 0. " N O " : G OTO 9 0

7 0 P R I NT @ 2 3 8. "MAYB E " : G OTO 9 0

8 0 P R I NT @ 2 3 7 . " N O WAY" : G OTO 9 0

9 0 FO R D LY= 1 T O 5 0 0 : N EXT D LY

1 0 0 G OTO 1 0

Run Decision Maker
When you first run the program, the screen clears and prints the title.
Think of a question you wish to have answered, then tap the space bar
gently. The computer will answer your inquiry and clear the screen

again.

49

50

Lesson 8: Decision Maker (continued)

Now think of your question, type [B][YJI�], and press I ENTER I. When
you're ready, press the space bar. If you don't like the answer you get,
press the space bar again. The computer's advice, on the average, is
correct about 50% of the time.

How It Works
The first two instructions clear the screen and print the title.

The keyboard is read by I N K E Y $. That is, the computer checks the
keyboard and automatically inputs any key that is pressed. If the
input from the keyboard is a null string (meaning that no key has
been typed), the program loops back to the same instruction and reads
the keyboard again. In this way, the program "hangs" or simply
waits for you to press any key. After you press a key, the program
continues.

The O N - G OTO command simply transfers the program to one of
several lines, depending on the value of R N D (4) . We use this feature
to select which message to print.

After printing one of the messages, the computer pauses for a short
delay. Then the program restarts, prints the title, and waits for you to
press any key. As you can see by the program, it doesn't matter
which key you press to get your answer.

L I N E 1 0 clears the screen.

LI N E 20 prints the title starting at screen location 1 3 3 .

LI N E 3 0 reads the keyboard. If no key has been pressed, this
instruction is repeated. As soon as any key is pressed, the computer
goes to the next line in the program.

L I N E 40 sends the computer to one of the listed lines, depending on the
value of R N D (4) . If this value is one, the computer goes to the first
line in the list: Line 50. If it is a two, the computer goes to the second
line number in the list: Line 60. S imilarly, a value of three or four will
select Lines 70 or 80.

The value that selects the line does not have to be R N D (N } . Here are
other forms of the O N - G OTO command:

O N A G OTO 2 0, 3 0. 400, 5 5
O N X-3 G OTO 3 0 0. 4 0 0. 5 0 0
O N C H O I C E G OTO 1 0 00, 2 0 0 0, 7 0 00

L I N E 5 0 prints YES starting at location 2 3 9 , then goes to Line 90.

L I N E S 6 0- 7 0- 8 0 print their messages and go to Line 90.

Lesson 8: Decision Maker (continued)

L I N E 9 0 causes a time delay while the variable D LY is increased from
one to 500. This F O R /N EXT loop is two separate instructions, written
on the same line and separated by a colon.

L I N E 1 00 sends the computer back to the beginning of the program.

We can add a lot to this program with some convincing sound effects
and a wider variety of answers. If Decision Maker is still running, stop
the program by pressing IBR EAKI . When OK appears, type [b][JJ�ITJ
and press I ENTER I to see the program on your screen. Now you can
add to or modify these instructions.

Experiment 1: Music to Think By
Let's make the computer sound like it's actually trying to think up an
answer with these additional lines. Type carefully and don't forget
to press I ENTER I after each line.

3 5 F O R S = 1 T0 1 0

3 6 S O U N D R N D (1 0 0) + 1 5 0, R N D (6)

3 7 N E XT S

Type [b][JJ�ITJ and press I ENTER I to see that you've entered these lines
correctly. If not, just type them over and try again.

This short F 0 R /N EXT loop will play a tune of ten notes. Both the
frequency and the duration are randomized. Now run the program
again. S ee if the computer's answers are more convincing with this

addition.

Experim.ent 2: Beeeeeeeeeeeep!
The time delay in Line 90 will work in any program situation where you
wish a pause. By changing the number of times the loop operates, you
can create delays of less than a second to many hours.

If you want a musical background, however, you can use the S O U N D
command to create a delay. Use IBR EAKI to stop your program. Then
list it with [b][JJ�ITJ and the I ENTER I key.

Change Line 90 to create a long musical tone. The second number in
the S O U N D command controls the duration of the tone. Notice that
the duration (25) is much higher than before with this new
instruction:

9 0 S O U N D R N D (1 0 0) . 2 5

5 1

52

Lesson 8: Decision Maker (continued)

Now run the complete program and see if the sounds make it more
interesting.

Experiment 3: Vocabulary Building
There's no limit to the things you can have your computer say, and
you can add as many words or phrases as you wish. Just add the line
numbers to the O N - G OTO list and increase the range of random
numbers.

As an example, here's how to add three more comments. Change
Line 40 two ways: increase the 4 to a 7 and add the three new line
numbers to the list. The new lines with additional words will be
numbered 45, 55, and 65.

40 O N R N D (7 } G OTO 5 0. 6 0. 7 0 . 8 0. 4 5. 5 5 . 6 5

All seven possible numbers for R N D (7) will now branch or go to a
different line in the program.

Write your own comments or use these "answers ." The P R I NT @
number is adjusted so the words will print in the center of the screen.

Here are some suggestions:

4 5 P R I NT @ 2 3 4. "AS K AGA I N " : GOTO 9 0
5 5 P R I NT @2 3 5."B EATS M E" : G OTO 9 0
6 5 P R I NT @ 2 3 8."N EVE R" : G OTO 9 0

Try these additions to the program, then add as many answers as you
like. For each new answer change the random function and add to the
list in Line 40.

Experiment 4: Long Listings
By now your program has grown longer than the screen. Try listing it
and see that the first few lines scroll off the top.

You can list the first section, or any other part of a program by adding
the first and last line numbers of a section to the L I ST command. Note
how the hyphen (-) is used in these examples. Try each one and see
the effect.

L I ST 1 0- 6 0 lists lines 10 through 60.
LI ST - 5 0 lists all lines up through Line 50.
L I ST 50- lists Line 50 and all following lines.

DECISION
MAKER

LESSON 8

KEYBOARD

1 0

20

30

40

50

60

70

80

CLEAR
&

PRINT

IN KEY $

P I CK
WORD

90 DELAY

1 00 REPEAT

Lesson 8: Decision Maker (continued)

ASK THE COMPUTER

YES

NO

\ \ I I /
- THE ANSWER -

/ / I \ '-

MAYBE

NO WAY

53

Lesson 9: Area C alculator

Lesson 9: Area Calculator
Formulas

Special Calculators

This calculator program computes areas and is very useful whenever
you are estimating how much paint, carpeting, wallpaper, tile, grass
seed, or other material to buy. To find the total area to be covered,
you will enter the dimensions of smaller sections. The computer will
calculate the area of each section and keep a running total.

Not only areas, but also volumes and other quantities may be
calculated with this programming model. In the Experiments section
you will see how to create a similar program from any mathematical
formula.

Load Lesson 9 from the cassette using jgLIJIQJIAJ[QJIMJ and ���ig.
Type each of these ten instructions and press I ENTER I after each one.
You can also type IAJ[Y]IIJIQ] and press IENTERI if you would like
Computer Learning Lab to enter the program for you.

1 0 T = O

2 0 C LS

3 0 I N PUT " L E N GTH" ; L

40 I N PUT "WI DTH" ;W

60 P R I NT "TH I S A R EA:" ;A

70 T =T +A

8 0 P R I NT "TOTAL A R EA:" ;T

9 0 I N PUT " M O R E (Y, N)";A $

1 00 I F A $ ="Y" G OTO 2 0

Run Area Calculator
Now type IB][Y]� and press I ENTER I . The screen will clear, and you
will be asked to enter a number for the length.

Type �[Q] or some other small number for the length and press
IENTERL Now type another small number like �� for the width and
press IENTERI again. The area you've specified is calculated and

55

56

Lesson 9: Area Calculator (continued)

displayed along with the total area. Since this is the first calculation,
this area and the total area are the same.

Now select [YI to go again and enter two more dimensions. This time,
the area you specified is shown along with the total area for both
surfaces.

Here's how to use this program in computing a total surface area,
such as the amount of carpeting required for a home. Begin by
thinking of the surface as a combination of squares or rectangles.
If there are several rooms, for example, consider each room
separately. If a room isn't a rectangle, divide the room into two or
more rectangles that you can measure easily.

Pick the units (feet, meters, yards, etc.) you will use to get the answer
you want. To find the number of square yards of carpeting to buy,
measure the dimensions of each small area in yards. To get a total
area in square meters, measure all dimensions in meters.

Stop the program by selecting !NJ or by pressing IBR EAKI . Then run the
program again. This sets the total area to zero (Line 10).

Now enter the dimensions of each rectangle that makes up the total
area you wish to calculate. As you enter the dimensions for each
small area, the total area will increase.

How Area Calculator Works
Stop your program by pressing IBR EAKI . List it on the screen by typing
[1][0�ITJ and pressing I ENTER I . Look at the flowchart diagram on
page 60 and the listing on the screen to see what the computer is
doing while this program runs.

The total area is set to zero when the program is first run. Then the
screen is cleared. The numbers you input for length and width are
used by the program to compute the area with the formula: A =L*W .
The screen shows the result as TH I S AR EA . Total area is computed
next by adding the area just calculated to the previous total, T . Then
the new total area is printed as : TOTA L A R EA .

Finally, the program asks if you have any additional areas to add. If
you enter [YI , the program loops back to clear the screen and input
new dimensions. Notice that the program doesn't loop back to the
beginning because this would reset the total area to zero.

L I N E 1 0 sets the variable T to zero. This variable is used to store the
total area.

LI N E 2 0 clears the screen.

Lesson 9: Area Calculator (continued)

LI N E 3 0 prints L E N GTH? and sets the variable L equal to the number
you input.

L I N E 40 prints WI DTH ? and sets the variable W equal to the number
you input.

L I N E 5 0 computes the area with the formula: A =L*W.

L I N E 6 0 prints TH I S AR EA and the value of A.

L I N E 7 0 computes the total area with the formula: T =T+A .

L I N E 80 prints TOTAL A R EA and the value of T.

L I N E 9 0 prints M 0 RE (Y, N) ? and sets the variable A $ equal to the
letter you type.

LI N E 1 00 sends the computer to Line 20 to clear the screen and input a
new set of dimensions if you type IYJ. Notice that T (the total area) is
not set to zero when the program repeats.

Programs that calculate specific things can be as simple or as
elaborate as you choose. We will add a feature to this program and
then use this programming concept to build other special calculators.

Experiment 1 : Add or Subtract
It's often convenient to subtract an area when computing totals. If you're
estimating how much paint is required to cover the walls, for
example, it' s easier to add all the wall areas together and then subtract
the windows and doors. If you're estimating how much grass seed to
buy, you might find it easier to add together all the area of your lot
and then subtract the area of the house and driveway.

These additional instructions make it easy to subtract areas. First,
stop your program by pressing IBR EAKI . Then list it by typing
[L][I]�[I] and pressing I R ETU R N I again. Now you can add this
subtraction feature to your program by adding these two instructions.
Type carefully and press I ENTER I after each instruction.

5 5 I N PUT "AD D O R S U BTRACT (+,-)" ; 8 $

5 7 I F 8 $ ="-" TH E N A = -A

Now list your program and see the changes. It should look like this:

1 0 T = O
2 0 C LS
3 0 I N PUT " L E N GTH" ; L
40 I N PUT "WI DTH";W

57

58

Lesson 9: Area Calculator (continued)

5 0 A = L*W
5 5 I N P UT "AD D O R S U BTRACT (+,-)"; B $
5 7 I F 8 $ ="-" TH E N A=-A
6 0 P R I N T "TH I S AR EA";A
7 0 T =T+A
80 P R I NT 'TOTA L AR EA";T
90 I N PUT "M O R E (Y, N) " ;A $
1 00 I F A $ ='Y' G OTO 2 0

If your program matches the example, type IBJIYJINJ and press I ENTER I
to run it. Now the computer will also ask if you wish to add or
subtract each area you enter. Try estimating the wall area of the room
you're in by entering the dimensions of each wall. Then subtract each
window or door by entering its dimensions and subtracting its area
from the total.

Experiment 2: Change the Formula
The general form of this program may be used to build a special calculator
for solving any mathematical problem, if you know the formula. For
example, if you want to find the volume of a cube, you can use this
formula:

Volume=Length*Width*Height

Try writing a program that inputs the length, width, and height and
then prints the volume of a cube. If you have difficulty getting this to
work or would like some help, read the rest of this experiment for a
solution.

In writing a program, you would choose variables to represent each
item in the formula. We used L and W for length and width, so let's
continue and use H for the height.

First, erase the program you now have by typing !NJ�� and
pressing I ENTER I . Now you can write a new program that will begin
by clearing the screen. Then the instructions will input each
variable with a message to describe what it is. Start with these
instructions.

1 0 C LS

2 0 I N PUT " L E N GTH" ; L

3 0 I N PUT "WI DTH";W

40 I N PUT "H E I GHT' ; H

Lesson 9: Area Calculator (continued)

List the program to be sure that it matches the example. Then run it
and see what it does. The program is not complete, but the part you
have entered should print each word and wait for you to input a
number. After you've entered a number for each word, the program
will stop. Now complete your program by adding the formula and the
printout instruction:

6 0 P R I NT "TH E VO LU M E I S :" ;V

Your program should now be complete. List it and check to see that
all instructions are correct, then run it and see that it computes the
volume accurately. Here's what the complete program should look
like:

1 0 C LS
2 0 I N PUT " L E N GTH" ; L
3 0 I N PUT "WI DTH" ;W
4 0 I N P UT "H E I G HT" ; H
5 0 V=L*W*H
60 P R I NT "TH E VO LU M E I S";V

If you like, you could also add instructions to compute the total of
several volumes, or have the program ask if you would like to repeat
a calculation.

Experiment 3: Try Your Own
Pick any simple formula such as the area of a triangle or volume of a
sphere. Write a program to calculate the answer automatically when
you input the data. As a final model, here's a program to compute gas
mileage when distance and fuel are known:

1 0 C LS
2 0 I N P UT "D I STAN C E TRAVE LED" ; D
3 0 I N PUT "GAS C O N S U M E D" ; G
40 M PG =D /G
5 0 P R I NT "GAS M I LEAG E ="; M PG ; " M G P"

59

Lesson 9: Area Calculator (continued)

AREA
CALCULATOR

LESSON 9

KEYBOARD

KEYBOARD

IO

20

30

40

50

60

70

80

90

TOTAL = O

CLEAR
SCREEN

INPUT
L & W

COMPUTE
AREA

PRINT
AREA

COMPUTE
TOTAL

PRINT
TOTAL

INPUT
A$

STOP

LENGTH?
WIDTH?

THIS AREA:

- - - - - - TOTAL AREA:

- MORE (Y, N)?

YES

60 .._ __ __

Lesson 10: Interest C alculator

Lesson 10: Interest Calculator
Printing Tables and Rounding Off Numbers

Integers: I NT(X)

It's often useful to print charts and tables with your computer. In fact,
that's the primary function of many business machines that compute
and print tables of financial and statistical information.

In this lesson you will see that this type of computing is very easy to
do. If you have a printer, you can create your own business machine
with little effort. The example we will use is actually quite useful if
you want to know how much money you would earn at a particular
interest rate. You can also calculate and print the effects of
depreciation on your capital.

Whenever you print dollar amounts with your computer, you will have
to round off the figures to the nearest penny. Otherwise, you could
wind up with figures like $12 .1302928 instead of simply $12. 13.

Load Lesson 10 from the cassette with (g[b)[Q]IAJ[Q][MJ and �OO�(g.
Type these eleven instructions into your computer after you s e e the
title frame. If you would rather enter the program automatically, type
IAJ[Q](!][Q] and press IENTERI.

1 0 C LS

2 0 I N PUT "PR I N C I P LE" ($ } " ' ;T

30 I N PUT "YEAR LY I NTE R EST (%} ' " ; 1

40 I N PUT "N U M B E R O F M O NTH S"; M

5 0 P R I NT

6 0 P R I NT " M O . . I NTE R E ST TOTAL "

7 0 FO R L = 1 TO M

8 0 A = I N T(l *T / 1 2 +. 5) / 1 00

9 0 T= I NT((T+A) * 1 00) / 1 00

1 00 P R I NT L;A,T

1 1 0 N EXT L

61

62

Lesson 10: Interest Calculator (continued)

Run Interest Calculator
To run this program, just type IBJ[Q]� and press IENTERI. Let's pretend
that you have $17,000 to invest for nine months and that you can earn
a yearly interest rate of 1 1 .9 percent.

When you see P R I N C I PLE ($) ? on the screen, type [!][Z][Q][Q][Q] and
press I ENTER I . Notice that you do not use commas when typing in
large numbers. Now type [1][1]0[ID for the yearly interest in percent,
and press [ENTER I again. Select [ID months, press I ENTER I , and see
how your $17,000 investment would grow over the next nine months at
1 1 .9% yearly interest rate.

In the first month, you would earn $168.58 interest and your total
assets would be the original investment plus the interest, or $17, 168 .58.
Now your new assets will earn interest for the second month. Since
you have more capital, your interest for the second month would grow
to $170.26.

You can try another calculation by running the program again. Just
type IBJ[Q]INJ and press [ENTER I. The program will prompt or remind
you as you enter the data. If you select more than nine months, the
chart won't fit on your screen. To stop the chart while it's printing,
press ISH I FTI and the � key. You can resume printing by pressing
any other key.

How Interest Calculator Works
List your program and look at the flowchart diagram on page 66
to see what the computer does when you run Interest Calculator.

After clearing the screen, the computer inputs your data: principle,
yearly interest, and number of months.

A title is printed for the chart with headings for each column.

The FOR /N EXT loop repeats once for ea.ch month. On each cycle, the
program computes the added amount for each month. This income is
rounded off to the nearest penny ($/ 100) . The total is increased by the
income to become the principle for the following month's calculation.
After the data is printed, the screen scrolls up one line.

If there are any more months to compute, the program loops again. if
not, it stops.

L I N E 1 0 clears the screen.

L I N E 20 prints P R I N C I P L E ($) ? and sets T equal to the number you
input.

Lesson 10: Interest Calculator (continued)

L I N E 3 0 prints YEAR LY I NTE R EST (%) ? and sets I equal to your
input. Notice how the information inside the parentheses tells you
exactly what to type.

L I N E 40 prints N U M B E R OF M O NTH S ? and sets M equal to your
input.

L I N E 5 0 prints a space to separate the input data from the chart.

LI N E 6 0 prints a heading for the chart. Lines 50 and 60 make the
interest rate table easier to read and understand.

L I N E 7 0 begins the FO R /N EXT loop. This loop continues until L is
greater than M , the total number of months.

L I N E 8 0 computes the added income for the month and rounds off the
answer to two decimal places.

L I N E 9 0 increases the total by adding the new amount to the previous
total.

L I N E 1 00 completes the FO R /N EXT loop. If L is less than M , the
program loops back to Line 70 where L is increased and the next
month is calculated.

This program works very well as it is and can calculate income from
virtually any investment when yearly interest is known.

Experiment 1 : Daily Compounding
If interest is figured every day instead of each month, your investment
will increase faster. The reason is that you won't have to wait until
the end of the month for your interest to start earning money. The
difference between monthly and daily calculation (or compounding)
isn't large, but it does change the figures.

Begin this experiment by calculating the total capital when $ 12000 is
invested for 12 months at 10% interest. Write down the interest and
the total for the final month.

Now change your program so that you will compound the interest
daily. This will be a quick test. We won't change all the lines in the
program, only the one that actually does the calculation. Here's the
original instruction:

80 A = I N T (l *T / 1 2 +. 5) / 1 00

Now change this line to calculate daily interest by changing TI 1 2 to
T / 3 6 5 , like this:

80 A= INT (l *T / 3 6 5 +. 5) / 1 00

63

64

Lesson 10: Interest Calculator (continued)

With this change the program computes daily, not monthly, interest.
Run this version and remember that you are actually counting days,
not months. If this change were permanent, we would also change the
printing on the screen. Pretend that M 0 NTH S actually means DAYS
and enter this data:

P R I N C I PLE ($) ? 1 2 000
YEA R LY I NTE R E ST (%) ? 1 0
N U M B E R O F M O NTH S ? 3 6 5

When the program prints out the results, you will see the interest for a
complete year, calculated one day at a time. Watch the days go by in
the left column, and see the daily interest grow from $3.29 at the start
to $3.63 per day after 358 days.

If you have written down the previous figures, you will see that this
method of calculating interest actually pays higher dividends. Here
are the comparisons:

Daily compounding: $13,261 .52
Monthly compounding: $13,256.55
Difference: $4.97

As you can see, it does make a difference whether your bank or other
savings institution compounds monthly or daily.

If you don't want to keep a record of this program, go on to the next
experiment. If you wish to save this program on tape and use it
again, please change these lines so that the information on the screen
is accurate:

40 I N PUT "N U M B E R O F DAYS"; M

6 0 P R I NT "DAY . I NTE R E ST TOTAL

Experiment 2: Integers
Begin by clearing the computer. Type �[g]� and press I ENTER I . Now
enter this short program:

1 0 I N PUT N

2 0 P R I NT " N U M B E R :" ; N

3 0 P R I NT " I NTE G E R : "; I NT(N)

4 0 G OTO 1 0

Now run your program and enter these numbers:

4. 44444
2 . 2 2 2 2 2

4. 5 6 7 8 9
1 1 1 . 8 8 8 8 8 8 8
1 2 3 4 5 . 6 7 8 9

Lesson 10: Interest Calculator (continued)

Notice what the computer prints. The integer of a number, I NT(X) ,
is the whole number with any fraction or decimal portion thrown
away. Also notice that the computer rounds off the ninth digit when
printing any number on the screen.

Try some more numbers if you like, and see that the integer is always
the number minus any fractional part.

Experiment 3: Printing Money
When we use the computer to calculate money, we often round off the
answers to the nearest penny. The integer function allows us to round
off a quantity to any number of decimal places we choose.

Press IBR EAKI to stop your program, then add this line to your
program to print the number you input to two decimal places:

3 5 P R I NT " M O N EY $ $: "; 1 NT (N * 1 00+. 5) / 1 00

Now run the program again, enter these numbers, and see that Line 35
rounds off the answer to the nearest penny. The computer will round
off the second number in the list below because it has more than nine
digits.

123.456789
1000000.666666
1 .98765

In Line 35 (and in Lines 80 and 90 of Interest Calculator) the integer
function rounds off the number by first multiplying it by 100, then
adding again. This produces a number that contains no more than two
decimal places and is increased by 0.01 if the third figure to the right
of the decimal point is greater than 1 / 2 (.5/ 100 or 0.005) .

Experiment 4: Printer Option
If you have a hard copy printer, add these lines and create printed interest
rate tables:

6 1 P R I NT#-2 . " DAY . I NTE R E ST TOTAL .

1 0 1 P R I NT#-2. L;A.T

Now the results will be sent to your printer as well as displayed on
the screen.

65

Lesson 10: Interest Calculator (continued)

INTEREST
CALCULATOR

LESSON 1 0

KEYBOARD

10

20
30
40

50

60

70

80
90

100

YES

1 1 0

CLEAR
SCREEN

INPUT
T, I, & M

PRINT
TITLE

LOOP L

COMPUTE
ADDED $
& TOTAL

PRINT
L, A, T

STOP

PRINCIPLE ($)?
INTEREST (%)?

NO. OF MONTHS?

MO __ INTEREST_ TOTAL_

I I 101
2 1 .01 102.01

3 1 .02 103.03

4 1 . 03 104.06

661...---

Lesson 1 1: Coloring Box
Graphics: C O LOR , S HAPE

Double loops: F O R / F O R , N EXT /N EXT

Lesson 1 1 : Coloring Box

This lesson illustrates how graphic shapes of several colors may be
placed anywhere on the screen. You will use this feature whenever
you write a program to print a graph, make a drawing, add a border,
or create a video game. You can mix letters and words with colored
shapes to form drawings or charts with text. You will also see how
two F O R /N EXT loops may be combined in a program. This technique
is used in this lesson to fill an area of the screen.

Load Lesson 1 1 from the cassette with [g[QIQ]!AJIQIMJ and [g]00[g][g.
Follow the directions on the title frame for Lesson 11 , then enter these
instructions. You can also type IAJ[Q][!]IQ] and press I ENTER I, and
Computer Learning Lab will enter the program for you.

1 0 C LS

2 0 I N PUT "C O L O R (1 - S) " ; C

3 0 I N PUT " S H A P E (0- 1 5)" ; S

4 0 A= 1 2 8 +(C - 1) * 1 6 +S

5 0 P R I NT @ 5 0, C H R $ (A)

60 F O R Y=4 TO 1 3

7 0 F O R X = 5 TO 2 6

8 0 P R I NT @Y*3 2 +X, C H R $ (A)

90 N EXT X : N EXT Y

1 00 I N PUT "M O R E (Y, N)" ; K $

1 1 0 I F K $ ="Y" G OTO 1 0

Run Coloring Box
The program begins by asking you to select one of eight colors. Type
any number from one to eight and press I ENTER I .

Now the program is requesting a number for the shape. There are 16
separate graphic shapes you can print on the screen. These shapes
are numbered 0- 15. Select [ru to print a pattern of small squares.

67

68

Lesson 11 : Coloring Box (continued)

When you press I ENTER I , the computer prints a single graphic
character in the shape and color you've selected. Then this same
character is printed over and over again to fill a large square on the
screen. This shows you what that character looks like when printed
alone and when it is used to cover a large area.

To see another combination of color and shape, type !YJ and press
I ENTER I . Now enter two numbers as before, pressing I ENTER I after
each one. Try several combinations to see what all the shapes and
colors look like. You will find that shape number zero always prints a
black block, and that shape number 15 is a block of the color you've
selected. In the experiments section you will see how to write
programs like this and print colored graphic characters anywhere on
the screen.

How Coloring Box Works
Stop your program by selecting � . Now type [b][I][§][!] and press
I ENTER I to list it on the screen. Compare the flowchart with the
instructions and see what the computer is doing when you run this
program.

When the program begins it clears the screen. Then you are asked to
input numbers for the color and shape of a graphic character. E ach
graphic character is plotted on the screen with C H R $ (N) , where N is
the number of your character. A sample is printed near the top of the
screen, so you can see what a single character looks like.

Using loop X , the character you've selected is printed in a horizontal
row that is 22 characters wide. Then, using loop Y , this row is
repeated 10 times to fill a square. When you run the program, you can
see the computer filling each row.

After all rows are filled, the program asks if you would like to see
more. Answer with Y and the program repeats. Any other answer
will stop the program.

L I N E 1 0 clears the screen.

L I N E 2 0 prints C O LO R (1 - 8) ? and sets the variable C to the number
you enter.

L I N E 3 0 prints S HA P E (0- 1 5) ? and sets the variable S to the number
you enter.

L I N E 40 is a formula that sets A equal to the number of the graphic
character you specified with C and S . This instruction can be used in
any program to print a color and shape.

Lesson 11 : Coloring Box (continued)

L I N E 5 0 prints character number A at location number 50. This
location is near the top of the screen (see diagram) . The symbol
C H R $ (A) is used to print the character whose number is A.

L I N E 60 begins loop Y . This loop prints from line 4 to line 13.

LI N E 70 begins loop X . This loop prints from column 5 to column 26.
In this program, two loops are used. As X goes from 5 to 26, a
horizontal row is printed. As Y goes from 4 to 13, this row is repeated
10 times to fill the square .

LI N E 8 0 prints graphic character number A at the position specified
by X and Y . As shown in the diagram, the expression Y*3 2 +X converts
X and Y to a position number.

L I N E 9 0 completes both loops. Notice that loop X moves the character
from left to right. E ach time this loop is finished, loop Y moves down
one line, and the process repeats. After both loops are complete, the
area on the screen is filled and the program continues with Line 100.

L I N E 1 00 asks: M O R E (Y, N) ? . Type [Y] and the program repeats.

These experiments show you more about printing colors and shapes,
using the C H R $ (N) command. You will also see how to locate any
position on the screen.

Experiment 1: The Cast of Characters
Clear your program from the computer's memory by typing INJ�Ml!
and pressing I ENTER I . Now enter this program, and don't forget to
press I ENTER I after each instruction:

1 0 C LS

2 0 F O R A = 3 2 TO 2 5 5

· 3 0 P R I NT C H R $ (A) ;

40 N EXT A

Now type II]OJ[§][I] and press I ENTER I . Check each instruction and
see that there are no errors. Run the program as before. The
computer prints all the characters from 32 to 255 on the screen. As
you can see, these characters include the symbols, letters of the
alphabet, and shapes in all eight colors. To print any one of these
graphic characters , use C H R $ (A) , where A is the number of the
character, like this:

P R I NT C H R $ (2 4 9)

69

70

Lesson 11: Coloring Box (continued)

When you press I ENTER I, this instruction prints shape number 9 in
color number 8 .

Experiment 2: Character Numbers
This experiment shows how to find the character number when you
know the color and shape you want. A formula for finding the number
was used in Line 40 of Coloring Box. You entered numbers for color
C and shape S. The computer calculated the character number A with
this instruction in Line 40:

A = 1 2 8 + (C - 1) * 1 6 +S

Let your computer do the arithmetic. Type these instructions and
print the answer. Remember to press IENTERI after each instruction.
You will not use line numbers, instead, the computer will follow each
instruction when you press I ENTER I .

C = S
S = 9
P R I NT 1 2 8 + (C - 1) * 1 6 +S

The computer printed 2 4 9 , the character number for shape 9 and color
8. Now print the graphic character number 2 4 9 with this instruction:

P R I NT C H R $ (2 4 9)

Experiment 3 : Screen Position
Now that you can print anything you want, learn how to position a
character or letter anywhere on the screen. There are 5 12 positions to
choose from. The screen is 32 columns wide and 16 rows high. Notice
that the top row and the column on the left are both numbered zero.
To find the number of the third row, for example, count: 0, 1, 2.

Another way to find a position number is to use the formula from
Coloring Box, Line 80. If X and Y are the column and row, the
position number is 3 2 *Y+X . If it is easier for you to find the position
you want by looking at the chart, use that method. If you would rather
decide on a column and row, use the formula.

In Coloring Box we printed the graphic character in the 19th space of
the second row (Line 50) . Find this position on the chart and read its
number. Or use the formula with Y= 1 (second row) and X = 1 8 (19th
column) . Remember that the row and column numbers start with zero,
not one.

Y = 1
X = 1 8
P R I NT 3 2 *Y+X

Lesson 11 : Coloring Box (continued)

E ither way, using the position number or the formula, you should get
the same answer: 5 0 . To print a character at position 50, use this
instruction:

P R I NT @50 .C H R $ (2 4 9)

71

Lesson 11 : Coloring Box (continued)

COLORING
BOX

LESSON 1 1

KEYBOARD

1 0
CLEAR

SCREEN

20 INPUT
COLOR,

30 SHAPE

COMPUTE
40 CHARACTER

NUMBER

PRINT
50

SAMPLE

60 LOOP Y

70 LOOP X

80

1 00

PRINT
CHARACTER

COLOR?
SHAPE?

COLOR
SHAPE

•

COLOR
SHAPE

•

r

KEYBOARD INPUT K$ - - - - - MORE (Y,N)?

1 1 0 YES

STOP

72L---

Lesson 12: Time Machine

Lesson 12: Time Machine
Time Delay

Comparison: Not Equal < >

If you've been wanting a digital stop watch, this program will create
one. It prints the hours, minutes, and seconds on the screen and
updates the display ten times each second.

You will see how to create a time delay that causes a program to
pause for a specific length of time. The P R I NT@ command is used to
print the data on the screen so that the words stay in place while the
numbers change. The space bar is used to stop the program and the
clock.

Load Lesson 12 with [g[jJ[QJ[AJIQ]IMJ and [f][X][f][g. Then enter the
program or use the [AJIY][I][QJ feature.

1 0 H =O : M =O : S =O

2 0 C LS

3 0 S =S + 1

40 I F S = 600 TH E N S =O : M =M + 1

5 0 I F M =6 0 TH E N M =O : H =H + 1

6 0 P R I NT @0, " H O U R S " ; H

7 0 P R I NT " M I N UTE S" ; M

8 0 P R I NT "S E C O N DS" ;S / 1 0 ; "

9 0 F O R T = 1 TO 1 9 : N EXT T

1 00 I F I N K EY $ < > " " G OTO 3 0

Run Time Machine
This program couldn't be easier to operate. Just type IB]IY]� and press
I ENTER I. The computer sets the time to zero and starts counting the tenths
of seconds. After sixty seconds, the number of minutes increases by 1
and the number of seconds starts over again at zero. If you wait for
an hour, you will see the hours increase by 1 and the minutes and
seconds both return to zero.

After a minute or two, press the space bar and stop the program. You
can begin counting again by typing IRJIY]� and pressing I ENTER I .
Doing this starts the program over from the beginning with the hours,
minutes, and seconds each set to zero.

73

74

Lesson 12: Time Machine (continued)

How Time Machine Works
In this section you will see how the computer is programmed to create
a clock. Stop your program now by pressing the space bar. Type
[QIJJ�IIJ and press I ENTER I to list the program on the screen.

The flowchart diagram on page 78 shows what the computer is
doing as the program runs. Notice that the program loops or repeats
constantly until the space bar is pressed. E ach time the program
loops, 0. 1 seconds are added to the clock and the time is printed on the
screen. When the program begins, the computer sets the hours,
minutes, and seconds to zero. Then the screen is cleared. In the next
step, 0. 1 second is added to the clock. If 60 seconds have passed, one
minute is added to the clock. If 60 minutes have passed, one hour is
added to the clock. (Remember that 60 minutes is 600 1 / 10 seconds, the
speed of your clock.)

In the next step, all data is printed on the screen. Previous times are
erased as new times are printed. The words H O U R S , M I N UTE S , and
S EC O N DS appear to stay the same because they are printed over and
over again in the same place on the screen.

The time delay in Line 90 causes a brief pause so that the computer
takes one-tenth of a second to do all the instructions inside the loop.
E ach time the program loops, the computer checks the keyboard to see
if the space bar is pressed. If so, the program ends. If not, it loops
back to Line 30 to add 0 . 1 second to the clock and continue keeping
time.

L I N E 1 0 sets the variables H , M , and S to zero. These letters are used
in this program to represent the number of hours, minutes, and tenths
of a second that have passed. E ach time the program is run the hours,
minutes, and seconds start at zero.

L I N E 2 0 clears the screen.

L I N E 3 0 adds 1 to the variable S . This letter represents the tenths of
seconds that are shown on the screen. When S equals 1, one-tenth of a
second has passed. If S = 1 0 , one second has passed. If S = 1 0 0 , ten
seconds have passed.

L I N E 40 checks to see if one minute has passed. Since the variable S
is increasing ten times each second, a minute is up when S = 600 . If
S =600 now, the computer resets S to zero and adds 1 to M . If S is not
equal to 6 0 0 , the computer skips Line 40 entirely and goes to the next
line in the program.

L I N E 50 checks the variable M to see if sixty minutes have passed. If
M = 6 0 then the computer sets the minutes to zero and adds 1 to the
hours, H . If M does not equal 6 0 , the computer skips Line 50.

Lesson 12: Time Machine (continued)

LI N E 6 0 prints H O U R S , followed by two spaces, and then prints the
value of H . The three spaces after the word are added so that the
numbers of hours, minutes, and seconds will line up on the screen.

The symbol @ after the word P R I NT tells the computer to print at a
particular location on the screen. P R I NT @O means print at location
zero, which is on the left at the top of the screen.

LI N E 7 0 prints M I N UTES and the value of M . This line is printed
directly under the previous line.

L I N E 80 prints S EC O N D S and the number of seconds. Remember that
the variable S is incrementing (counting) ten times each second. To
print the number of seconds, the computer divides the value of S by 10.

After printing the number of seconds, the program prints two spaces
" ". This erases any previous numbers that were left on the screen.
For example, when the clock goes from 59.9 seconds to 0 seconds, the
two blank spaces erase the .9 portion of the number.

L I N E 9 0 creates the time delay. This instruction tells the computer to
count from 1 to 19 before going to the next line in the program. The
number 19 is chosen so that the entire program will loop or repeat ten
times each second.

Remember that 0 . 1 second is added to the clock each time the program
loops. With a number that is larger than 19, the computer would take
longer and the clock would run too slowly. Similarly, counting to a
number that is smaller than 19 would take less time, and the clock on
the screen would run too fast.

L I N E 1 00 checks to see if the space bar is pressed. If you don't press
the space bar, the program goes back to Line 30 and repeats. When
you press the space bar, the program stops.

The computer symbol for the keyboard is I N K E Y $ and if this is not
equal to a space " " , the computer goes to Line 30. These two symbols
<> mean "not equal to" and are used here to branch to Line 30 if the
space bar is not pressed. If the space bar has been pressed, then
I N K EY $ = " " . In this case, the computer skips the instruction in Line
100, and the program stops.

You can add or change instructions and modify Time Machine in
many ways. Here are a few ideas you might wish to try:

Experiment 1 : Tick, Tick, Tick
Since most clocks make noise, you may wish to add a ticking sound as
the clock runs. Stop the program and add this new instruction:

3 5 I F S =I NT(S / 1 0) * 1 0 TH E N S O U N D 2 3 5. 1

75

76

Lesson 12: Time Machine (continued)

Type []JOJ[§]IIJ and press I ENTER I to see the complete program with
your addition. Now type IBJ[Y]�. press I ENTER I, and adjust your TV
volume to hear the beep.

Line 35 adds a "BEEP" to the clock every second, To do this, the
program uses the integer (I NT) function to see if S is a number that
can be divided evenly by ten, such as 10, 20, 30, etc. If S is a multiple
of ten, then one full second has passed, and a sound is played.

Experiment 2: Timing Accuracy
The addition of a ticking sound will change the accuracy of your clock and
make it run slower. You can adjust the delay loop in Line 90 so that the
clock will run at the correct speed.

Type [b]OJ[IDITJO[ID[Q] and press I ENTER I to see the present Line 90.
To make the clock run faster, use a smaller value for the number 1 9 in
this line:

9 0 FOR T= 1 TO 1 9 : N E XT T

You may have to try several values to get your clock to keep accurate
time.

Experiment 3: Alarm Clock
Now change the program to create an alarm clock. There are several
ways to do this. You might start by deciding how long the clock
should run before the alarm sounds. Then use an I F statement to
check and see whether or not the time is up.

For example, you could add an instruction to make a buzz after a
certain length of time. Stop your program and add this line:

8 5 I F M =3 TH EN S O U N D 2 0, 2 0 : E N D

When you run the new program, you will hear a buzz as soon a s three
minutes are up.

Experiment 4: Timer
You could set the alarm clock by using a variable (such as the letter A
for alarm) instead of the number three in Line 85. At the beginning of
the program, input a value for the variable so that you can set the
alarm for any number of minutes you choose. Stop your program
again and add these two lines:

1 5 I N PUT " H OW MANY M I N UTES " ;A

85 I F M =A TH E N S O U N D 2 0, 2 0 : E N D

Lesson 12: Time Machine (continued)

When you run this version of your program it will ask you how many
minutes you wish. Enter a number and wait that many minutes to
hear the result.

If you have a precise sequence of events such as developing photo­
graphs or doing yoga, you might wish to make a multiple alarm
clock that alerts you with tones at specific intervals. Just add as
many IF conditions as you wish, with a sound for each one.

Experiment 5: Stop Watch
Here's one final idea to create a start/ stop option for your program. Add
the following lines; then use the space bar to stop, the igj key to go,
and the [BJ key to reset the time to zero.

After you press the space bar, the program will wait for you to press
igj or [BJ before proceeding.

1 1 0 K $ =1 N K E Y $

1 2 0 I F K $ ="G" G OTO 3 0

1 3 0 1 F K $ ="R" G OTO 1 0

1 40 G OTO 1 1 0

Line 1 10 sets the variable K $ to the letter typed on the keyboard. If
this letter is G or R, the clock resets. If not, the program returns to
Line 1 10 to get another key from the keyboard.

77

78

Lesson 12: Time Machine (continued)

TIME
MACHINE

LESSON 1 2

KEYBOARD

1 0

20

30

40

50

60
70
80

SET HOURS MINUTES
AND SECONDS

TO ZERO

CLEAR
SCREEN

ADD . 1
SECONDS

PRINT
TIME

TIME
90 DELAY

1 00
INPUT

KEYBOARD

ADD
ONE MINUTE

ADD
ONE HOUR

HOURS 0 - MINUTES 0
SECONDS 0

1 10

END

Lesson 13: Probability

Lesson 13: Probability
Random Numbers and Probability Curves

In this lesson you will use the computer to simulate random events.
Randomness is often used in designing computer games and for
creating patterns in music and art.

You will begin by writing a short program to print random numbers
from 1 to 6, like a six-sided die. This programming technique can also
be used to create random dice with any number of sides, or possible
combinations. E ach experiment will add a section to your program
and add a feature, such as storing the results or printing a graph.

The final program is recorded on the Lesson 13 cassette. This
computer model of two dice displays a graph showing how often each
combination is rolled.

Experiment 1: Random Numbers
The easiest way to understand random numbers is to try an experiment.
Type this instruction into your computer:

P R I N T R N D (6)

When you press !ENTER!. the computer prints a number between 1 and
6. This number is selected by chance and could be a 1 , 2, 3, 4, 5, or 6 .
If you type this instruction many times, you will eventually see each
of these numbers printed on the screen.

Experiment 2: Write a Program
An easier way to print random numbers is to write a short program.
Type !NJ[§� and press I ENTER I to clear the computer of any other
programs or data. Type these instructions and press I ENTER I after
each one.

1 1 0 A =R N D (6)

1 2 0 P R I NT A

1 3 0 G OTO 1 1 0

Type IBJIYJINJ and press I ENTER I to run your program. The computer will
set the variable A equal to a random number from 1 to 6. Then the
computer will print the value of A on the screen. As the computer
adds new numbers at the bottom of the screen, the printing will move
up.

79

80

Lesson 13: Probability (continued)

Press IBR EAKI to stop the program. Then type [b][I][§]II] and press
IENTERI to list it on the screen, like this:

1 1 0 A=R N D (6)
1 2 0 P R I N T A
1 3 0 G OTO 1 1 0

The random function in Line 1 10 may be changed to create numbers
between 1 and any positive number you select. You can also use this
function to create random numbers between 0 and 1 . Here are some of
the ways you can change Line 1 10 to print different sets of random
numbers, with the result shown to the right of the instruction:

1 1 0 A=R N D (1 0) numbers from 1 to 10.

1 1 0 A = R N D (1 00) numbers from 1 to 100.

1 1 0 A = R N D (2) - 1 numbers that are 0 or 1 .

1 1 0 A=R N D (O) numbers from 0 to 1 .

To see what each of these changes do, just type the new line and press
I ENTER I to change the program, and then run it.

Experiment 3: Dice Simulation
This program simulates a pair of dice by creating two random numbers
between 1 and 6, adding them together, and printing the result. Type
each of these instructions:

1 1 0 A=R N 0 (6)

1 2 0 B =R N D (6)

1 3 0 P R I NT A+B;

1 40 G OTO 1 1 0

Run your program. The computer will fill the screen with numbers from
2 to 12. You can stop the printing on the screen by pressing ISH I FTI
and � . Press any key to start the printing again.

Notice that the numbers 6, 7, and 8 come up very often and that the
numbers 2 and 12 are seldom printed. As with real dice, this computer
simulation will roll a 7 much more often than a 2 or 12. This is
because there are several combinations of two dice that will total 7
(6+ 1 , 5+2, 4+3, 3+4, 2+5, and 1 +6) . There is only one combination that
will total 2 (1 +1) or 12 (6+6).

Lesson 13: Probability (continued)

Experiment 4: Store and Print the Results
To keep a total of the results and see which combinations of two dice
come up more often, store the numbers in an array with these
instructions:

2 0 D I M X (1 2)

1 40 X(A+B) =X (A+B) + 1

Line 20 dimensions an array to hold 13 numbers. They are X (O) , X (1) ,
X (2) , and so o n up t o X (1 2) . Line 140 adds 1 t o a number in the array to
record how often each total is rolled. If the total is 2, for example,
the number in X (2) is increased. If the total is 4, then X (4) is increased.

These next two instructions create a FO R /N E XT loop that cycles 200
times. With this loop, the computer will roll the dice 200 times,
storing the results of each roll in the array.

90 F O R N = 1 TO 2 0 0

2 9 0 N E XT N

These last four instructions clear the screen and print the numbers
stored in the array. As N cycles from 2 to 12, the computer will print
N and the value of X (N) .

3 00 C LS

3 1 0 F O R L=2 TO 1 2

3 2 0 P R I NT L, X (L)

3 3 0 N EXT L

Type [][I][§][f] to see your program on the screen. Here is how your
complete program should look. If you see any errors, just enter the
line again, using the same line number, to replace it.

2 0 D I M X (1 2)
9 0 FOR N = 1 TO 2 0 0
1 1 0 A = R N D (6)
1 2 0 B = R N D (6)
1 3 0 P R I NT A+B;
1 40 X(A+B) =X(A+B) + 1
2 9 0 N EXT N
3 00 C LS
3 1 0 F O R L = 2 TO 1 2
3 2 0 P R I NT L .X (L)
3 3 0 N EXT L

81

82

Lesson 13: Probability (continued)

Run this version of the program. You will see the total for each throw
on the screen as the computer rolls the dice 200 times. Then the
results are displayed with the totals on the left, with the number of
times each total was rolled. Your results will vary, but the screen
should show something similar to this:

2
3
4
5
6
7
8
9
1 0
1 1
1 2

5
2 0
1 2
2 4
1 8
3 9
2 9
2 3
1 3
1 1
6

In the example shown above, "snake eyes" came up 5 times and "boxcars"
came up 6 times. The number 7 came up most often: 39 times . Run
your own experiment several times and see your results .

Experiment 5: Watch the Action
With these two lines you can add a continuous printout that shows
the results of each roll:

3 0 C LS 1

2 2 0 P R I NT @ 6 4, " D I E 1 =" ; A; " D I E 2 =" ; B ; " TOTAL=";A+B

Line 30 clears the screen. Line 200 prints the score. The @ symbol means
to print at a particular location. P R I NT @ 6 4 is used to print at
location 64, the beginning of the second line on the screen.

Type IJ]�[Q] and press I ENTER I to delete Line 130.

When you run this program you will see a scoreboard with D I E 1 ,
D I E 2 and their TOTAL printed on the second line of your screen.
After 200 rolls, the results are displayed as before.

Experiment 6: Count the Rolls
Add a new variable R to keep track of the number of rolls with these
two instructions:

1 0 R =O

1 3 0 R =R + 1

2 3 0 P R I NT " N U M B E R O F R O L LS =" ; R

Lesson 13: Probability (continued)

There is no important reason for keeping track of this number; it simply
makes the scoreboard more fun to watch. Line 10 sets R to 0 when the
program starts. Line 130 adds 1 to R each time the dice are tossed.
Line 230 prints the results on the third line on the screen. Run the
program and see a complete scoreboard.

Experiment 7: Plot a Graph
This change in the program will replace the section that printed the
array with a section that prints a graph of the results . Add this line to
print a dot on the screen for each roll. Type carefully; we will explain
how this works later.

3 1 0 P R I NT @(A+B + 2) *3 2 +X(A+B) +2 , C H R $ (1 4 2)

Now change the program loop. Instead of using the FO R /N EXT loop in
Lines 90 and 290, the program will use a conditional branch in Line
320. With the FO R /N E XT loop, the program cycled 200 times . The
branching instruction in Line 320 checks to see if our graph has
reached the right edge of the screen. If it has not, the program loops
back to Line 100 to roll the dice again. Instead of rolling the dice 200
times, the program will now roll the dice until the graph fills the
screen.

Remove these lines by entering their line numbers, pressing I ENTER I
after each one:

9 0

2 9 0

3 00

3 3 0

Then change Line 320 to form a loop that goes back to Line 1 10 if the graph
is less than 28 units wide.

3 2 0 I F X (A+B) < 2 8 G OTO 1 1 0

Here is how the complete program should now look. List your program
and check these lines carefully:

1 0 R =O
2 0 D I M X (1 2)
3 0 C LS 1
1 1 0 A =R N D (6)
1 2 0 B =R N D (6)
1 3 0 R =R + 1
1 40 X(A+B) =X (A +B) + 1

83

84

Lesson 13: Probability (continued)

2 2 0 P R I NT @64, " D I E 1 =";A; " D I E
2 =" ; B ; " TOTAL =";A+B
2 3 0 P R I NT " N U M B E R OF R O LLS ="; R
3 1 0 P R I NT @(A+B + 2) *3 2 +X(A+B) + 2 , C
H R S (1 4 2)
3 2 0 I F X (A+B) < 2 8 G OTO 1 1 0

When you run this version of the program, you will see the scoreboard
at the top of the screen and a graph of the results . With each roll of
the dice, the computer prints a dot on the screen. Notice that the dots
in the middle rows add up faster. When any row contains 28 dots, the
program stops.

Experiment 8: Format the Screen
As you might have guessed, the rows of dots correspond to the
possible totals for the two dice. With these instructions you will add a
title at the top and a row of numbers from 2 to 12 along the left edge of
the screen to label each row.

40 P R I NT: P R I NT " P R O BA B I L ITY C U RVE . . . "
5 0 P R I NT :PR I NT

6 0 F O R N = 2 TO 1 2 : P R I NT N : N EXT N

3 3 0 G OTO 3 3 0

Line 330 goes to Line 330. This is not a mistake; this special instruction
creates a hold in the program by repeating Line 330 over and over
again. The program stays in this holding pattern on Line 330 until
you press IBR EAKI . The reason for this line is to avoid having the
program stop after the graph is printed. This avoids the "OK" signal
and flashing cursor on the screen.

Now run the complete program and see the computer simulate rolling
two dice, with a continuous readout of the results. Compare the shape
of the graph with a curve. While the probability of rolling a 7 is the
highest, not all runs of this experiment will show row number 7 as the
longest. When you wish to stop the program, press IBR EAKI .

For a complete listing of the program, see the next experiment.

Experiment 9: Probability
The program for this experiment is recorded on the Lesson 13 cassette.
You can load this program from the cassette using [g[b]IQllAJIQ], or
enter it yourself, following the experiments in this lesson.

Lesson 13: Probability (continued)

When you run Probability you will see a computer simulation of two
dice. With each roll, the computer prints the value for each die, their
total, and the number of rolls so far. For each roll, the computer
prints a dot on the graph, indicating which totals come up most often.
To see how many times the dice total 3, for example, just count the
dots in row 3. When any row has totaled 28 dots, the program goes
into a holding pattern. To stop the program, press IBR EAKI .

Here is a complete listing of the program. Remarks in Lines 1 , 100,
200, and 300 are used to make the program easier to read and understand.
The listing shows spaces between groups of instructions to help you
see how each section works.

1 R E M . . . P R O BA B I L ITY . . .
1 0 R =O
2 0 D I M X (1 2)
3 0 C LS 1

4 0 P R I NT: P R I NT " . . . P R O BA B I LI
TY C U RVE . . . "
5 0 P R I NT: P R INT
60 FOR N = 2 TO 1 2 : P R I NT N : N EXT N

1 00 R E M . . . R O L L D I C E . . .
1 1 0 A =R N D (6)
1 2 0 B =R N D (6)
1 3 0 R =R + 1
1 40 X(A+B) =X(A+B) + 1

2 00 R E M . . . P R I NT S C O R E . . .
2 2 0 P R I NT@ 6 4. " D I E 1 =" ;A; " D I E 2
="; B ; " TOTAL =" ;A+B
2 3 0 P R I NT " N U M B E R O F R O LLS ="; R

3 00 R E M . . . PLOT G RAPH . . .
3 1 0 P R I NT@(A+B + 2) * 3 2 +X(A+B) + 2 . C H
R $ (1 4 2)

3 2 0 I F X(A+B) < 2 8 G OTO 1 0 0

3 3 0 G OTO 3 3 0

How It Works
Look at the flowchart diagram on page 88 and see how the seven
sections of this program work together in creating the final result.
To see the program instructions in each section, type UJ[]�II] and
the lines you wish to see on the screen. For example, type
LIJ[[]�IIJO[I)[J[ID[Q] and the computer will list the first four lines of
the program.

85

86

Lesson 13: Probability (continued)

L I N E S 1 - 3 0 initialize the program by setting the variable R to 0,
dimensioning the array X to hold 13 numbers, and clearing the screen .

L I N E S 40- 6 0 format the screen. These instructions print the title at
the top, skip two lines, and print the numbers 2 through 12 along the
left edge.

LI N E S 1 00- 1 40 use the random function to simulate two dice. The
variables A and B are set to a random number from 1 to 6. The
number of rolls, R , is increased by 1 . One of the locations in array X
is increased. If A+B is 7, location X (7) is increased.

These instructions are repeated for each roll of the dice.

L I N E S 2 00- 2 3 0 print the score board. At location 64 (the beginning
of the second line on the screen) the computer prints D I E 1 and the
value of A , D I E 2 and the value of B , and TOTAL followed by the value
of A+B. On the next line, N U M B E R O F R O LLS is printed, followed by
the value of R .

L I N E S 3 00- 3 1 0 plot the graph. To see how Line 310 works, type this
instruction:

P R I NT @ 9 0 . C H R $ (1 4 2)

Notice that this instruction has n o line number and will not b e added to
the program. When you press I ENTER I , the computer will print a black
dot near the top-right corner of your screen. This location is number
90 and C H R $ (1 4 2) is the graphics character you see on the screen.

L I N E 3 1 0 uses the expression (A+B + 2) * 3 2 +X(A+B) + 2 to position the
dot on the screen. This expression is a programming module that you
can use to position letters or numbers anywhere you like.

LI N E 3 2 0 checks to see if the number of dots in the line is larger than
2 8 . If not, the program goes back to Line 1 10 for another roll of the
dice. If there are 28 dots, the program goes to the next instruction.
The number 28 was picked because that many dots fill the screen

L I N E 3 3 0 creates a holding pattern by repeating over and over. This
prevents the "OK" and the flashing cursor that normally appear when
a program is finished. To stop the program, press IBR EAKI .

Lesson 13: Probability (continued)

Experiment 10: Musical Dice
If you would like sound effects, add this instruction to your program:

3 1 5 S O U N D (A+B) * 1 0, 1

The computer will play a note for each dot added to the graph. This
slows down the program but adds a nice feature.

87

88

Lesson 13: Probability (continued)

PROBABILITY

1 0- START
30

40-
60

100-
1 40

200-
230

300-
3 1 0

330

320

YES

FORMAT
SCREEN

ROLL
D ICE

PRINT
SCORE

P LOT
GRAP H

- - - - - - - 7 . ' '° " "

.. PROBABILITY CURVE . . .

DIE I = 6 DIE 2 = 3 TOTA L = 9 - - - - - - - • NUMBER OF ROLLS= 2

- - - - - - - .

Lesson 14: Sorting

Lesson 14: Sorting
Arrays and Data Processing Techniques

Computers used as business machines are frequently programmed to
sort information. Data must often be organized in a particular way,
and several kinds of sorting programs may be used to do this. A
mailing list, for example, might be sorted by alphabetical order to find
people quickly by name. This same information could also be sorted
by zip code and organized by location. The method used could also
vary, with some sorting programs operating faster under certain
circumstances than others.

This program shows you how the computer sorts data. At first,
numbers in an array will be put in numerical sequence. The final
experiments show how you can arrange data in alphabetical,
numerical, and even graphical order.

Experiment 1 : Pick 10 Numbers
Begin by typing INJ�l\M to clear your computer of any previous
programs. Then enter these instructions to create an array and fill it
with five random numbers:

1 0 D I M S (1 0)

2 0 F O R L = 1 TO 1 0

3 0 S (L) =R N D (50)

40 N EXT L

This array is named S and contains ten locations that can store
numbers: 8(1) , 8(2) , 8(3) , 8(4) , 8(5) , 8(6) , 8(7) , 8(8), 8(9), and 8(10).
To see what numbers are stored in these locations, add these
instructions:

50 F O R L= 1 TO 1 0

6 0 P R I NT S (L)

7 0 N EXT L

Now your program will create an array, fill it with ten random numbers,
and print the contents of the array. Run the program and compare
your results with the following numbers. The numbers picked for
your array will almost certainly be different, but you should see ten
numbers between 1 and 50, like this :

42
6
3 0 89

90

Lesson 14: Sorting (continued)

1 7
2 1
4
1 8
3 1
4 1
2 2

O K

Experiment 2 : Pick the Smallest Number
You can find the smallest number in the array by checking it and
comparing it with a new variable, X. Add these instructions to find
the smallest number in the array and set X equal to that number:

8 0 X = 5 0

9 0 F O R L = 1 T O 1 0

1 0 0 I F S (L) < X TH E N X = S (L)

1 1 0 N EXT L

1 2 0 P R I NT "TH E S MALLEST N U M B E R I S
" ; X

First the variable X is set equal t o 5 0 . Then X i s compared with each
number in the array. If any number is smaller than X , then X is set
equal to that number. After the complete array has been checked, the
smallest number is printed.

Here is the complete program. Spaces have been added between
sections to match the flowchart in Figure 1 (on page 100) . Type
[b]ITJ[§JIIJ and check your program against this listing. Also compare
this listing with the flowchart and see how the three sections of your
program work together to produce the printout on the screen.

1 0 D I M S (1 0)
2 0 F O R L = 1 TO 1 0
3 0 S (L) = R N D (50)
40 N E XT L

5 0 FO R L = 1 TO 1 0
6 0 P R I NT S (L)
70 N E XT L

8 0 X = 5 0
9 0 F O R L = 1 T O 1 0
1 00 I F S (L) < X T H E N X = S (L)
1 1 0 N EXT L
1 2 0 P R I NT "TH E S MALLEST N U M B E R
I S" ; X

Lesson 14: Sorting (continued)

Run the program. You will see ten random numbers with the smallest
number printed at the end, like this:

1 4
5
2 1
43
3 2
2 6
40
3 3
2
1 5

TH E S MALLEST N U M B E R I S 2
O K

Your numbers will b e different, but the format should look the same,
with the smallest number selected and printed at the end. Run this
program several times, if you like, and see that the smallest number is
always selected and printed.

Experiment 3: Smallest Numbers First
Now change the last section of the program, Lines 80- 120, to place
the smallest numbers first. Your new program will examine each
position in the array. If the number being checked is larger than any
number in the array, the numbers change places, putting the smallest
number first.

Remove Line 80 because it is no longer needed, and replace the last
section of the program with these instructions:

8 0

9 0 F O R L = 1 TO 9

1 00 I F S (L) < S (L + 1) G OTO 1 4 0

1 1 0 T = S (L)

1 2 0 S (L) =S (L + 1)

1 3 0 S (L+ 1) =T

1 4 0 N EXT L

91

92

Lesson 14: Sorting (continued)

Run the new program and print the array. Now enter G OTO 5 0 and run
the program again, starting at Line 50. Notice that the smaller
numbers have moved up in the display and that the larger numbers
have moved down. Enter G OTO 5 0 several more times. Each time you
run the program from Line 50 the numbers in the listing will change
places to put the smaller numbers first. After running the program
several times, you will see that the numbers are in numerical order.

How It Works
When you run the program from Line 50 the computer will print the
array and then compare each number, S (L) , with the number that
comes next in the array, S (L+ 1). If S (L) is the smaller, the computer
goes to Line 140 to compare the next numbers in the array. If S (L) is
not the smaller, the numbers in S (L) and S (L + 1) are exchanged.

The variable T is used to temporarily hold the number in S (L) while
the swap is being made. Here are the steps :

1 . The number in S (L) is stored in T .

2 . The number in S (L+ 1) is moved to S (L) .

3 . The number stored in T is moved to S (L + 1) .

Experiment 4: Before and After
In these next two experiments you will write a program that repeats
automatically to completely sort the numbers in the array. You can
enter this program yourself, or skip to Experiment 6 and load the final
program from the Lesson 14 cassette.

The program begins with an input section which lets you decide the
range of numbers used in selecting the random numbers for the array.
Then the array is filled and printed on the screen.

The sorting section uses two program loops to place all numbers in
sequence, starting with the smallest numbers. After the sorting
process, the last section prints the array.

Enter ��� to erase the previous program and enter these
instructions:

1 0 R E M . . . S O RTI N G . . .

2 0 C LS

3 0 I N PUT "START' ; S

40 I N PUT " E N D " ; E

5 0 I N P UT "N U M B E R"; N

6 0 D I M S (N)

1 00 R E M . . . F I L L AR RAY . . .

1 1 0 FO R L = 1 TO N

1 2 0 S (L) = S +R N D (E -S + 1) - 1

1 3 0 N EXT L

1 40 P R I N T "RAN D O M :"

1 5 0 G O S U B 4 0 0

2 0 0 R E M . . . S O RT AR RAY . . .

2 1 0 F O R A = 1 TO N - 1

2 2 0 S O U N D 2 00. 1

2 3 0 F O R B =A+ 1 TO N

2 40 I F S (A) < S (B) G OTO 2 8 0

2 5 0 T=S (A)

2 6 0 S (A) = S (B)

2 7 0 S (B) =T

2 8 0 N EXT B : N EXT A

2 9 0 P R I NT: P R I NT "S O RTE D :"

3 00 G O S U B 4 0 0

3 1 0 E N D

400 R E M . . . P R I NTO UT . . .

4 1 0 F O R L = 1 TO N

4 2 0 P R I NT S (L) ;

430 N EXT L

440 R ETU R N

Lesson 14: Sorting (continued)

93

94

Lesson 14: Sorting (continued)

Run this program and input starting and ending numbers for selecting
the random numbers to fill the array. To begin, try �!IJIAJIBJ!IJ[J[!]
and ��IQ][J[ID to fill the array with numbers between 1 and 9 . The
final question asks how many numbers you wish to put in the array.
Try �IYJIMJ[ID�IBJ[J@][QJ to select 30 random numbers. After
printing these numbers, the program sorts the array in numerical
order. Adjust the volume to beep as each position in the array is
filled. When the sorting is complete, the printout will show these
same 30 numbers sorted in numerical sequence, like this:

STA RT? 1
E N D ? 9
N U M B E R ? 3 0
RAN D O M :

4 9 3 5 5 6 6 2 2 6 9
4 9 2 9 3 2 1 3 4 9

1 9 2 9 9 4 2 8 3

S O RTE D :
1 1 2 2 2 2 2 3 3 3

3 4 4 4 4 5 5 6 6 6
8 9 9 9 9 9 9 9 9
O K

Run the program again and select a new range of numbers to sort. You
can request any range you like. Try 32 numbers between 10 and 99 to
create a printout like this:

START? 1 0
E N D ? 9 9
N U M B E R ? 3 2
RAN D O M :
1 7 1 6 6 7 1 8 7 5 2 9 8 3 2 9
1 2 5 2 4 3 5 4 1 4 9 8 3 0 7 6
9 3 3 9 9 7 6 7 5 3 7 2 7 3 7 1
4 3 5 3 5 6 7 2 4 2 1 5 8 5 3 1

S O RTE D :
1 2 1 4 1 5 1 6 1 7 1 8 2 9 2 9
3 0 3 1 3 9 42 4 3 4 3 5 2 5 3
5 3 54 5 6 6 7 6 7 7 1 7 2 7 2
7 3 7 5 7 6 8 3 9 3 9 8
O K

Experiment 5: Dynamic Sorting
With the addition of these instructions, the program will show you the
sorting process while it is happening. In this way, you will be able to
see exactly how the computer compares each position with the rest of
the array and exchanges numbers to place lower numbers first.

Lesson 14: Sorting (continued)

Remove Lines 140, 290, and 300 from the program, then add three new
printing instructions. These printing commands tell the computer to
print characters on the screen. These characters are the numbers,
letters, punctuation marks, and graphics symbols represented by their
ASCII numbers.

1 40

2 9 0

3 0 0

2 7 5 P R I NT @ 1 2 7 +A.C H R $ (S (A)) ;

2 7 7 P R I NT @ 1 2 7 +B, C H R $ (S (B)) ;

4 2 0 P R I NT @ 1 2 7 + L. C H R $ (S (L)) ;

The final program listing is shown at the end of this lesson, along
with a complete·flowchart in Figure 3 on page 102. When you run this
program, use numbers that match ASCII values. Any numbers
between 36 and 255 may now be used for START and E N D . Numbers
lower than 36 are blanks, and will not show on the screen. Higher
numbers than 255 are not used for graphics characters and will cause
an error in Line 420.

How It Works
The flowchart in Figure 2 on page 101 shows three program sections
and a subroutine for printing the array. These units in the flowchart
work together to display a random and a sorted array.

The input section assigns values to the variables S , E , and N , and
dimensions the array. E ach position in the array is filled with a
random number between S and E . The subroutine at Line 400 is used
to print the random numbers.

In the last section, numbers are arranged in sequence, starting with
the smallest. Two program loops are used. Loop A begins with the
first position and compares all following positions in the array. If
any smaller numbers are found, the numbers are reversed so that the
smaller number is in the first position. Then the next position is
compared with all the rest of the array to see if any numbers are
smaller. If so, they are reversed as before, putting the next smallest
number in position two.

This process continues until loop A has compared all positions and
the numbers are in sequence. This is very much like the previous
experiment, with the computer continuing the comparison until the
process is complete. The printout subroutine is used again in Line 290
to print the results.

95

96

Lesson 14: Sorting (continued)

Experiment 6: Sorting
This program is recorded on the Lesson 14 cassette. You can load
the program from the cassette or enter it yourself, as described in
Experiments 4 and 5.

Run the program and begin by entering numbers for START, E N D ,
and N U M B E R . As a suggestion, try these inputs:

START? 4 8
E N D ? 5 7
N U M B E R ? 3 2

The computer will load an array with 32 random numbers between 48
and 57. These are the ASCII numbers associated with 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9.

Watch your screen as the computer sorts these numbers in sequence,
starting with the first position and filling it with the lowest number in
the array. Notice that the computer moves from one position to the
next, filling each position with the lowest number available. Adjust
your TV speaker to hear the beeps as each position is filled. After all
positions have been checked and adjusted, the program stops with the
numbers in perfect sequence.

You can also try sorting letters of the alphabet with these inputs:

START? 6 5
E N D ? 9 0
N U M B E R ? 1 2 8

With these instructions, the computer will fill an array with 128 random
numbers between 65 and 90. Since 65 is the ASCII number for the
letter A and 90 is the ASCII number for the letter Z , this array will
contain numbers associated with letters of the alphabet. Notice the
computer moves from one position to the next as it fills the array in
alphabetical order.

You can select any numbers you choose for this program, provided
that the STA RT and EN D do not exceed 255 and the value for
N U M B E R S is not larger than 383. Numbers larger than this will
cause an error in the program. Numbers smaller than 36 are blanks,
and will not be displayed on the screen.

The numbers associated with graphics characters can also be used. To
sort 11 lines of characters, input these instructions:

START ? 1 2 8
E N D ? 1 3 4
N U M B E R ? 2 5 6

Lesson 14: Sorting (continued)

With more items in the array, the sorting process takes almost 30 minutes.
If you get tired of waiting, press IBR EAKI and try another input.

Here is a combination that displays all of the graphics characters,
then sorts them by shape and color:

START ? 1 2 8
E N D ? 2 5 5
N U M B E R ? 2 5 6

How It Works
You can use computers to sort data by numerical sequence, alphabet,
or code. This program is a simple sorting algorithm or recipe that
works well and lets you watch the process. For sorting large data
bases, much faster sorting programs, as well as larger and faster
computers, are often used.

The flowchart in Figure 3 shows what is happening while the sorting
program operates. After you input the START, E N D , and the
N U M B E R of items to sort, the computer fills an array with numbers in
random order.

The sorting process begins with the first item in the array. The
computer searches the array for the lowest numbered item and places
it in the first position. After filling the first position, the computer
beeps and moves to the next position. After all positions have been
checked, the array is in numerical sequence, and the computer stops .

As the positions in the array are sorted, the number of items the
computer searches through are decreased. The search process and the
beeps speed up because the computer is spending less and less
time looking through the items that are left.

The principles involved are described in the first three experiments.
This program is assembled in experiments 4 and 5. Here is a complete
listing of Sorting:

1 0 R E M . . . S O RTI NG
2 0 C LS
3 0 I N PUT "START" ; S
40 I N PUT " E N D" ; E
5 0 I N PUT "N U M B E R"; N
6 0 D I M S (N)

1 00 R E M . . . F I LL AR RAY .
1 1 0 FO R L= 1 TO N
1 2 0 S (L) =S +R N D (E -S + 1) - 1
1 3 0 N EXT L
1 5 0 G O S U B 4 0 0

97

98

Lesson 14: Sorting (continued)

2 00 R E M . . . S O RT AR RAY
2 1 0 F O R A = 1 TO N - 1
2 2 0 S O U N D 2 0 0, 1
2 3 0 F O R B =A+ 1 TO N
2 4 0 I F S (A) < S (B) G OTO 2 8 0
2 5 0 T=S (A)
2 6 0 S (A) = S (B)
2 7 0 S (B) =T
2 7 5 P R I NT @ 1 2 7 +A C H R $ (S (A)) ;
2 7 7 P R I N T @ 1 2 7 +8 , C H R $ (S (B)) ;
2 8 0 N EXT B : N E XT A
3 1 0 E N D

4 0 0 R E M . . . P R I NTO UT . . .
4 1 0 FO R L = 1 TO N
4 2 0 P R I N T @ 1 2 7 + LC H R $ (S (L)) ;
4 3 0 N EXT L
440 R ETU R N

L I N E 1 0 and all other Remarks are ignored by the computer.

L I N E 2 0 clears the screen.

L I N E S 3 0- 5 0 print the messages in quotes and set the variables (S , E , and
N) to the numbers you input.

LI N E 6 0 dimensions array S . This sets aside positions in the
computer's memory for storing N numbers.

LI N E S 1 00- 1 3 0 are a program loop that fills the array with random
numbers between S and E .

L I N E 1 5 0 sends the computer to the subroutine beginning at Line 400.
When the computer reads R ETU R N in Line 440, it will return to the
next line in the program following G O S U B , Line 200. This subroutine
is used to print the array.

LI N E S 2 00- 2 8 0 form two program loops. Loop A begins the search at
the first position in the array and slowly moves to the next to the last
position. When this loop is complete, the program ends. Loop B
checks the array to see if there are any numbers less than the one
being compared. If so, they are reversed to put the lowest number
available in position A . This process is repeated for each position.

LI N E 2 2 0 creates a beep each time loop A cycles. These cycles get
shorter as A increases.

L I N E S 2 50- 2 7 0 exchange numbers in the array. This quick shuffle
involves an extra variable, T , to store the contents of S (A) while the
swap is being made.

Lesson 14: Sorting (continued)

LI N E S 2 7 5- 2 7 7 are used to print characters. When two numbers
in the array change places, these instructions change the cor­
responding figures on the screen. The location on the screen and
the location in the array are set by the same variable. If A = 2 , for
example, Line 275 would print at screen location 129. The character
printed would be the one whose number is stored in S (2), the second
position in the array.

L I N E 3 1 0 ends the program after loop A is complete.

LI N E S 400- 4 4 0 are a subroutine that reads the array and prints
matching characters on the screen.

99

Lesson 14: Sorting (continued)

SORTING
FIG. 1

1 0- FILL
40 ARRAY

3 1

50- PRINT 40

70 ARRAY
... _ _ _ _ _ _ _ _ 36

3
45

80-
PICK THE

1 20
SMALLEST - - - - - - - - SMALLEST

NUMBER NUMBER IS 3

.
END

100

Lesson 14: Sorting (continued)

SORTING
FIG. 2

RUN

I
1 0-60

co���16Nsj- START? 1
KEYBOARD END? 1 1

NUMBER? 6

�

400-440

FILL - - - - -� PRINT �- - - - - RANDOM 1 00- 1 50 ARRAY OUT 1 4 7 3 9 6

400-440

SORT - - - -� PRINT �- - - - - SORTED
200-3 1 0 ARRAY OUT 1 3 4 6 7 9

END

101

Lesson 14: Sorting (continued)

SORTING
FIG . 3

?
1 0-60 co:J"rJr�JJNsf · · · · - - - - - - - - - - - - - - - - - -- ---

START? 65
KEYBOARD � END? 90

NUMBER? 7

.....__

400-440

1 00- 1 5 0
FILL - - - - -�I PRINT If - - - - - -ARRAY OUT LPAFRBL

'---

SORT
200-280 ARRAY � - ABFLLPR r-,

'
'

'
'

'
'

'
'

'
,

,DJ)
3 10 END -

102

Lesson 15: Temperature Converter

Lesson 15: Temperature Converter
This lesson uses temperature conversion between English and metric
units as an example to show how you can write a program for solving
any mathematical problem. You will also see how to round off your
answers and how a menu can be used to select any portion of a
program.

The menu, one of the programming modules discussed in Section 3, is
used in this lesson to select a conversion when either English or
metric units are known. You will use this same module with slight
modifications to easily select from any number of possibilities at the
beginning of other programs you write.

Experiment 1: Convert F to C

The formula for converting a temperature in fahrenheit to celsius is
C=5/ 9*(F-32) where C is the temperature in celsius and F is the
temperature in fahrenheit.

Begin by typing �(g]� to clear your computer of your previous
program, then enter this new program to convert temperatures from
F to C.

1 00 I N PUT F

1 1 0 C = 5 / 9 * (F-3 2)

1 2 0 P R I NT C

When you run this program, the computer will print a question mark
and wait for you to input a value for F . Type [ZJ[l]� and press
I ENTER I . You will see the answer, 1 0 0 , and OK on the screen. Run
the program again and enter @I� for F . The celsius equivalent is 0.
The temperature at which water boils is defined as 2 12° F or 100° C.
The freezing temperature is 32° F and 0° C.

Now convert 7 0 degrees F to C by running the program again and
inputting [Z][Q] . The answer on your screen is 2 1 . 1 1 1 1 1 1 1 . If you
convert 80 degrees F to C , you will get 2 6 . 6 6 6 6 6 6 7 as the answer.

Experiment 2: Rounding Off Answers
When the computer converted 2 12 and 32 degrees F to C , the answers
were 1 00 and 0. These numbers are integers, or whole numbers with
no fractional parts. Converting 70 and 80 degrees to C created the
numbers 2 1 . 1 1 1 1 1 1 1 and 2 6 . 6 6 6 6 6 6 7 . These numbers are not integers
because they contain a fractional part. The I NT E G E R command can
be used to print the integer or whole number with the fraction
removed.

103

Lesson 15: Temperature Converter (continued)

Add line 1 15 to change the program so that it prints the integer or
whole number part of the answer.

1 1 5 C = I NT (C)

Now run the program two more times to convert 70 and 80 degrees F
to C . You will get 2 1 and 2 6 as the answers.

Removing the fractional part of the answer is not as accurate as
rounding off to the nearest whole number. To round off to the nearest
whole number, first add 0.5 to the number, then convert the number to
an integer. Change Line 1 15 to round off to the nearest whole number
of degrees with this instruction:

1 1 5 C =I NT(C +. 5)

Type [JJ[O[§][IJ and press I ENTER I to list the complete program:

1 0 0 1 N PUT F
1 1 0 C = 5 / 9 * (F-3 2)
1 1 5 C = I NT (C +. 5)
1 2 0 P R I NT C

Now run the program and convert 70 and 80 degrees F to C . The
answers, 2 1 and 2 7 , are now rounded off to the nearest integer or whole
degree.

This table of temperature conversions is accurate to one degree. Use
your program to check this table or to convert any temperature in
fahrenheit to celsius, with the answer rounded off to the nearest
degree.

Fahrenheit Celsius
0 - 18

32 0
50 10
70 21
80 27

100 38
212 100

Experiment 3: Prompt the User
In order to use this program, you must know that the number you
enter is in degrees F and that the number calculated and printed is
in degrees C . This works perfectly well, as long as you remember
what to do. By changing the input and print instructions, you can
print messages on the screen that make this program clear and easy
for anyone to follow.

104 .._ __ __

Lesson 15: Temperature Converter (continued)

The actual messages you use can be as simple or elaborate as you
like. To add any message to an input, just put the message in quotes,
followed by the semicolon and the variable you wish to use. For
example, you can replace Line 100 with this instruction:

1 00 I N PUT " H OW MANY D E G R E E S F"; F

When the computer reads Line 100 it will print the message H OW
MANY D EG R E E S F? and wait for your input.

Similarly, instead of just printing the value of C in Line 130, you can
add a message describing the answer with this new instruction:

1 2 0 P R I NT F; " D E G R E E S F ="; C ; " D E G R E E S C "

In Line 120 the computer will print the value o f F , the words
D E G R E E S F = , the value of C , followed by D E G R E E S .

List your program. It should look like this on your screen, with
messages added to Lines 100 and 120:

1 00 I N PUT " H OW MANY D E G R E E S F"; F
1 1 0 C = 5 / 9 * (F-3 2)
1 1 5 C =I NT(C +. 5)
1 2 0 P R I NT F ; " D E G R E E S F =" ; C ; " D E G
R E E S C"

If your program doesn't match this listing, please type the correct
instructions and list the program again to check it.

Now run your program and notice that it tells you what to input and
describes the result. With these messages added, your program is
much clearer, especially for a person using the program for the first
time.

Experiment 4: Convert C to F
Converting centigrade to fahrenheit is easy. Just substitute the correct
formula, and change the instructions to input C and print F . First,
add Line 130 to end the program after the first set of instructions.
Then add this conversion to your program with these lines:

1 3 0 E N D

2 0 0 I N P UT "HOW MANY D E G R E E S C " ; C

2 1 0 F =C * 9 / 5 +3 2

2 2 0 F = I NT(F+ . 5)

2 3 0 P R I N T C ; " D E G R E E S C ="; F; " D E G R E E S F

105

Lesson 15: Temperature Converter (continued)

Your program now contains two sections, as shown by this listing.
We have added a blank line between the sections for clarity.

1 00 I N PUT " H OW MANY D E G R E E S F"; F
1 1 0 C = 5 /9* (F -3 2)
1 1 5 C =I NT(C +. 5)
1 2 0 P R I NT F ; " D E G R E E S F ="; C ; " D E G
R E E S C "
1 3 0 E N D

2 00 I N PUT " H OW MANY D EG R E E S C " ; C
2 1 0 F = C * 9 / 5 + 3 2
2 2 0 F =I NT(F +. 5)
2 3 0 P R I NT C ; " D E G R E E S C ="; F; " D E G
R E E S F

One set of instructions beginning at Line 100 converts F to C , and
the new lines you have added convert C to F . Check the second section
beginning at Line 200 with this instruction:

G OTO 2 00

When you press I ENTER I , the computer will begin running the program
at Line 200 and print the message: H OW MANY D E G R E E S C ? Enter
the number [1][Q][Q] for degrees centigrade. The computer will print:

1 00 D E G R E E S C = 2 1 2 D E G R E E S F

Experiment 5: Menu Module
In this experiment you will add a menu so that you can convert either
fahrenheit or celsius temperatures. This menu is one of the
programming modules explained in Sec�ion 3. When you select item
[!] from the menu, the program will go to Line 100 for a F to C
conversion. Select � on the menu and the program will go to Line
200 for a C to F conversion.

The extra spaces in front of each line in the menu are used to center
the printing on the screen. Add these lines to create the menu:

1 0 C LS : P R I NT

2 0 P R I NT " TE M P E RATU R E C O NVE RTE R

3 0 P R I NT

40 P R I NT " 1 . FAH R E N H E I T TO C E LS I U S"

5 0 P R I NT . . 2 . C E LS I U S TO FAH R E N H E IT'

106 --

Lesson 15: Temperature Converter (continued)

6 0 P R I N T

7 0 I N PUT " S E LE C T (1 - 2) " ; S

8 0 C LS : P R I NT

9 0 O N S G OTO 1 00, 2 00

These instructions are fully described in Section 3 and can be used,
with different words, to create a menu to fit any program. In this
example, the menu prints the text on the screen and lets you input a
number from the keyboard.

Input a � and the computer will go to Line 200, the section that
converts C to F. After printing the answer, the computer will stop.

Run the program again and enter a [I] for your selection. The
program will convert the fahrenheit temperature you input and then
stop.

Figure 1 on page 1 1 1 is a flowchart diagram that shows how the
program works. The menu module prints the menu and inputs the
selection. If a number other than 1 or 2 is selected, an error is detected
and the computer repeats the menu. If you select [I] , the program
converts F to C . Select � and the program converts C to F . Notice
that the keyboard is used to input the selection and the numbers for
conversion.

Experiment 6: Repeat?
One more program module will make Temperature Converter easier to use
over and over again. After the program converts a temperature, have it
print: AN OTH E R C O NVE R S I O N (Y, N) ? The following instructions
ask the question, input the answer, and send the computer back to
Line 10 if the input is a Y .

3 0 0 P R I NT

3 1 0 I N PUT "AN OTH E R C O NVE R S I O N (Y, N)" ; A $

3 2 0 I F A $ ='Y' 'G OTO 1 0

Now complete the addition to the program with this new Line 130.
This instruction sends the computer to Line 300 and A N OTH E R
C O NVE R S I O N (YJ�) ? after a fahrenheit conversion.

1 3 0 G OTO 3 0 0

107

108

Lesson 15: Temperature Converter (continued)

Here is a complete listing. Blank lines have been added to separate
the listing into sections.

1 0 C LS : P R I NT
2 0 P R I NT "
3 0 P R I NT
40 P R I NT "
5 0 P R I NT "
6 0 P R I NT
7 0 I N PUT "
8 0 C LS : P R I NT

TE M PE RATU R E C O NVE RTE R"

1 . FAH R E N H E IT TO C E LS I US"
2 . C E LS I U S TO FAH R E N H E I T"

S E LE C T (1 . 2) " ; S

9 0 O N S G OTO 1 0 0, 2 0 0

1 0 0 I N PUT "HOW MANY D E G R E E S F" ; F
1 1 0 C = 5 /9 * (F - 3 2)
1 1 5 C =I NT(C +. 5)
1 20 P R I NT F; "D E G R E E S F =" : C ; " D E G
R E E S C"
1 3 0 G OTO 3 00

2 0 0 I N PUT 'HOW MANY D E G R E E S C" ;C
2 1 0 F=C *19 / 5 + 3 2
2 2 0 F = I NT(F+ . 5)
2 3 0 P R I NT C ; "D E G R E E S C =" ; F; " D E G
R E E S F

3 0 0 P R I N T
3 1 0 I N P UT "AN OTH E R C O NVE;R S I O N (Y, N)" ; A $
3 2 0 I F A $ ='Y' G OTO 1 0

The Figure 2 flowchart on page 1 12 shows how the menu, F to C
conversion, C to F conversion, and the repeat sections work
together. The computer prints the menu, inputs your selection, and
goes to the section of the program that converts fahrenheit (Lines
100-130) or celsius (Lines 200-230) . The number you input is converted,
and the results printed are on the screen. After printing the answer, the
computer asks if you wish to repeat. If so, the program begins again
with the menu.

Experiment 7: Temperature Converter
This program is recorded on the Lesson 15 cassette. You can load
this program from the cassette with ig[b]IQJ[A][QJ, or you can enter it
from the keyboard, following the experiments in this lesson.

When you run Temperature Converter you will see a menu with two
selections. Type [!] and press I ENTER I and the program will ask
for a temperature in fahrenheit. Enter any number you choose. The
computer will convert to celsius and print the results.

Lesson 15: Temperature Converter (continued)

Type [Y] and press lENTERl to try another conversion. This time,
select � and convert a celsius temperature to fahrenheit.

Here is a complete listing of the program. Remarks in Lines 1, 99,
199, and 299 are used to make the program listing easier to read and
understand. Compare these titles with the flowchart, Figure 2.

1 R E M . . . M E N U . . .
1 0 C LS : P R I NT
2 0 P R I NT "
3 0 P R I NT
4 0 P R I NT "
5 0 P R I NT "
6 0 P R I NT
7 0 I N PUT "
8 0 C LS : PR I NT

TE M P E RATU R E C O NVE RTE R"

1 . FAH R E N H E IT TO C E LS I U S"
2 . C E LS I U S TO FA H R E N H E I T"

S E LE C T (1 . 2) " ; S

9 0 O N S G OTO 1 00. 2 0 0
9 5 G OTO 1 0

9 9 R E M . . . F TO C
1 00 I N P UT "HOW MANY D E G R E E S F"; F
1 1 0 C = 5 / 9 *(F - 3 2)
1 1 5 C =I NT(C +. 5)
1 2 0 P R I NT F ; " D E G R E E S F ="; C ; " D E G
R E E S C "
1 3 0 G OTO 3 0 0

1 9 9 R E M C TO F
2 00 I N PUT " H OW MANY D E G R E E S C " ; C
2 1 0 F = C < 9 / 5 + 3 2
2 2 0 F = I NT (F +. 5)
2 3 0 P R I NT C ; " D E G R E E S C =" ; F; " D E G
R E E S F

2 9 9 R E M . . . M O R E ?
3 00 P R I NT
3 1 0 I N P UT "A N OTH E R C O NVE R S I O N (Y
, N)" ;A $
3 2 0 I F A $ ='Y' G OTO 1 0

How It Works
Look at the Figure 2 flowchart and see how these four sections of
this program work together in creating the Temperature Converter.
To see the program instructions in each section, type LIJ[D�[!] and
the lines you wish to see on the screen. Begin by typing
LIJ[D�[!]OIIJc:Ji:ru[Q] to see the menu.

__ __. 109

Lesson 15: Temperature Converter (continued)

L I N E S 1 - 9 0 create the menu. This program module is described in
Section 3, page 199 . The number you input determines the next step in
the program. Input a [1] and the program goes to Line 100. Input a
� and the program goes to Line 200. Input any other number and the
program goes to Line 10 to clear the screen and print a new menu.

L I N E S 9 9 - 1 3 0 request a temperature in fahrenheit, input the number,
and convert it to celsius. The program bypasses the next section and
goes to Line 300.

LI N E S 1 9 9- 2 3 0 request a temperature in celsius, input the number,
and convert it to fahrenheit.

L I N E S 2 9 9- 3 2 0 are a program module that asks if you wish to repeat
the program. If you input a IYJ the computer is sent to Line 10. This
and other modules used to end programs are described in Section 3.

1 101.---

KEYBOARD

KEYBOARD

KEYBOARD

Lesson 15: Temperature Converter (continued)

TEMPERATURE
CONVERTER

FIG . I

MENU

ERROR

CONVERT
F TO C

END

200-230

CONVERT
C TO F

END

TEMPERATURE

CONVERTER

1 . F TO C

2. C TO F
SELECT (I , 2) •

2 1 2F = I OOC

I OOC = 2 1 2F

__ __... 1 1 1

Lesson 15: Temperature Converter (continued)

KEYBOARD MENU

KEYBOARD

ERROR

KEYBOARD

KEYBOARD

TEMPERATURE
CONVERTER

FIG . 2

1 00- 1 30

CONVERT
F TO C

200-230

CONVERT
C TO F

300-320

MORE?

END

-

�

-

TEMPERATURE

CONVERTER

I . C TO F
2. F TO C

SELECT (1 -2) •

2 1 2 F = l OOC

l OOC = 2 1 2F

ANOTHER
- - - - - - CONVERSION

?

1 12&-.--

Lesson 16: Cipher

Lesson 16: Cipher
Program and Game Design

Begin this lesson by loading the Cipher program from the Lesson 16
cassette and playing a computer version of a popular strategy game.
Then see how this program can be written in small sections, tested,
and expanded.

A popular version of this program is available as a board game with
colored pegs. You can also purchase several hand-held electronic
variations. Commercial software is available for playing this game
on many different computers.

The game you will build follows these rules:

• You try to guess a secret code made up of a combination of numbers.

• E ach time you guess, the computer will score the accuracy of your
guess.

• For each number in your answer that exactly matches an item in
the code in both number and position, you are scored one black bar.

• For each number in your answer that matches a number in the code
but is not in the correct position, you are scored one black dot.

• The score you get on each trial tells you more about the code. If
you plan your strategy perfectly, you can break the code in the
minimum number of moves.

This version lets you select up to seven positions and up to nine numbers.
With Cipher, you can pick a wide variety of options to test your
skill. If you have never played the game, just follow the directions
in the first experiment, and see how it works.

Experiment 1 : Cipher
Begin by loading the Lesson 16 cassette with [g(b]IQl@[Q]. Then type
IB][Y]� and press I ENTER I .

The computer will ask for the number of positions you want in the
code. Type @I and press I ENTER I . Then the computer will ask how
many numbers (from 1 to 9) you want the computer to choose from
when it creates the code. Type @] again and press I ENTER I .

The computer will create a three-digit code, using the numbers: 1 , 2 ,
and 3 . This code could be any one of the following combinations.

1 13

Lesson 16: Cipher (continued)

1 1 1 2 1 1 3 1 1
1 12 212 312
1 13 213 313
121 221 321
122 222 322
123 223 323
131 231 331
132 232 332
133 233 333

Now type [1]�@] as your first guess. For each number that matches
the code exactly, the computer will print a black bar. Three black bars
mean you have guessed the code. For each number that matches the
code but is not in the exact position, the computer will print a black
dot.

For example, if the computer had picked 1 1 2 for the code, and you had
guessed the following numbers , this would be the result:

Computer's
Code= 1 1 2

Your
Guess:

1 2 3
2 3 1
1 2 2
3 3 3
2 1 2
2 1 1
1 2 1
1 1 2

Score:
I *

I I

I I
I **
I **
I l l

Note:
I = bar

* = dot

Notice how a vertical bar (shown as I in the chart above) is displayed
each time the correct number appears in the correct position and how
a black dot (shown as * is displayed each time the number is correct
but not in the correct position.

If your guess matches the code exactly, the computer prints three
bars and asks, G O AGAIN? (Y.N) . Type [YI and press I ENTER I to
start again with another code.

If you didn't guess the code correctly on your first try, enter another
guess . Type three digits and look at your score to see if your second
guess matches any numbers in the code.

Continue guessing until your guess matches and you have broken the

code. Then the program will ask G O AGAIN? (Y,N) . Type [YI and
press IENTERI to start a new game. If you select more positions or
more numbers, the code will be harder to break.

If you want to stop the program before you have solved the code, just

press IBR EAKI .
1 14 .__ __ __

Lesson 16: Cipher (continued)

How It Works
Look at the flowchart on page 123 and see what the computer is
doing while this program runs. The first step sets up two arrays for
storing the code and for storing each guess.

The I N PUT GAM E section works with the keyboard to determine what
type of code will be created.

I N PUT G U E S S also works with the keyboard to input and store each
guess.

S C O R E P O S I TI O N S contain the instructions for checking each
number in the guess against the matching position in the code.
Numbers that match are scored with a black bar.

S C O R E N U M B E R S contain other instructions for comparing each
number in the guess with all numbers in the code to see if any black
dots should be scored.

The question M 0 R E , shown by a diamond in the flowchart, can be
answered two ways. If the code is not broken, the computer returns to
input another guess. Solve the code and the computer goes to the next
section in the diagram.

The TU N E near the end is played when the code is solved.

TRY AGA I N by typing a [Y] and the program repeats by returning
to the I N PUT GAM E section.

Experiment 2: Initialize and Input Game
In these next experiments you will write Cipher from the beginning.
In writing long programs, it is best to write short sections and to
test them as you go along.

The first section dimensions arrays to hold the code and the answer,
clears the screen, and prints the title. Type �[g]� and press I ENTER I
to erase the previous program, then enter these instructions:

1 0 R E M . . . C I PH E R . .

2 0 D I M C (7) , H (7)

3 0 C LS 1

40 P R I NT " . C I PH E R . . . "

1 15

116

Lesson 16: Cipher (continued)

Line 10 is a remark and is ignored by the computer. Remarks make your
programs easier to read and understand, but have no effect on the
computer. Line 40 prints the title on the screen.

The array C (7) will store the computer code up to 7 digits long. The
second array, H (7) , will store the guess. When you write your own
programs, pick letters for your variables that help you remember
what they contain. Arrays C and H , for example, hold the
computer's code and the human's guess.

In the following instructions, the variables P and N hold the values
for position and number. Now enter these instructions and press
IENTERI after each one:

1 0 0 R E M I N PUT GAM E .

1 1 0 I N PUT " H OW MANY P O S I T I O N S (3 - 7)" ; P

1 2 0 I N PUT " H OW MANY N U M B E R S (2 - 9) " ; N

Run this part of the program and check it. The screen clears and the
title is printed on the top line. Input numbers as requested. The
numbers you enter are printed to the right of each question. After you
input two numbers, the program stops.

Experiment 3: Select Code
Now add the instructions that create the code you will try to break.

2 0 0 R E M S E L ECT C O D E .

2 1 0 F O R L= 1 TO P

2 2 0 C (L) = R N D (N)

2 3 0 N E XT L

This loop cycles once for each position or digit in the code. On each cycle,
the computer sets a position in the array equal to a random number.
On the first cycle, C (1) is set equal to a random number. On the next
cycle, C (2) is set equal to a random number, and on the third cycle,
C (3) is set, and so on.

Run your program and select a code with 3 positions and 4 numbers.
The computer will input your data, create a code, and stop. You can
check to see what the first number in the code is by asking the
computer to print it with this instruction:

P R I NT C (1)

Lesson 16: Cipher (continued)

Notice that there is no line number. This tells the computer to do the
instruction immediately. When you press I ENTER I , the computer
prints the number in C (1 }, which is the first digit in the code. Since
you picked 4 numbers to select from, the number in C (1) could be a
1 , 2, 3, or 4.

The other numbers in the code are C (2) , C (3), and C (4}. You can print
these and any other variables in a program by using P R I NT .

Experiment 4: Input Guess
Now add these instructions to input your guess. The number you enter
will be stored in the variable K $ and printed on the screen. Then.
each digit will be stored in array H with the first digit in H (1) , the
second in H (2) , and so on.

3 0 0 R E M I N PUT G U E S S .

3 0 5 P R I NT

3 1 0 F O R L = 1 TO P

3 2 0 K $ =1 N K EY $: 1 F K $ =" " G OTO 3 2 0

3 3 0 H (L) =A S C (K $ } -48

340 P R I N T " "; K $;

3 5 0 S O U N D 9 2 . 2

3 6 0 N E XT L

3 7 0 P R I NT "

The remark in Line 300 makes it easy to find this section in the listing.
Line 305 spaces down one line on the screen. This line was added to the
program to separate the numbers on the screen.

The F O R /N EXT loop from Line 310 to Line 360 cycles once for each
position in the code. E ach time this loop cycles, Line 320 creates a
holding pattern and the program waits for an input from the keyboard.
This is done by repeating Line 320 if the input from the keyboard is a
blank " " . When you type any key, the variable K $ is set equal to the
ASCII value of the key you type, and the program goes to Line 330.

Line 330 stores each number of your guess in array H . The number of
any key is its ASCII value minus 48.

Then the computer prints a space, prints the number you typed, and
makes a beep in the speaker. After a number has been entered for

1 17

Lesson 16: Cipher (continued)

each position in the code, the program goes to Line 370 and prints a
space to separate the score from the guess.

Here is how the program should look on your screen. Blank lines
have been added between sections to match the flowchart.

1 0 R E M . . . C I P H E R . . .
2 0 D I M C (7 } , H (7)
3 0 C LS 1
40 P R I N T " . . . C I PH E R . .

1 00 R E M . . . I N PUT GAM E . . .
1 1 0 I N PUT " H OW MANY P O S I TI O N S (3
- 7) ; P
1 2 0 I N PUT " H OW MANY N U M B E R S (2
- 9) ; N

2 0 0 R E M . . . S E LECT C O D E . .
2 1 0 FO R L = 1 TO P
2 2 0 C (L) = R N D (N }
2 3 0 N EXT L

3 0 0 R E M . . . I N PUT G U E S S . . .
3 0 5 P R I NT
3 1 0 F O R L= 1 TO P
3 2 0 K $ = I N K EY $: 1 F K S ='" ' G OTO 3 2 0
3 3 0 H (L } =AS C (K $ } -4 8
3 4 0 P R I NT " " ; K $;
3 5 0 S O U N D 9 2 , 2
3 6 0 N E XT L
3 7 0 P R I NT " "

Experiment 5: Score Positions
After you have added this next section, you will be able to play a
limited version of the game.

400 R E M . . . S C O R E P O S ITI O N S .

4 1 0 R = O

4 2 0 F O R L= 1 TO P

4 3 0 I F C (L) < > H (L) G OTO 4 6 0

4 4 0 R =R + 1 : S O U N D 1 7 7 , 2

4 5 0 P R I NT C H R $ (1 3 8) ;

4 6 0 N EXT L

1 18L---

Lesson 16: Cipher (continued)

The variable R is used to keep track of the number of digits in the
correct position. The F O R /N EXT loop cycles once for each digit and
compares the code with the guess. If they are not equal, Line 430
sends the computer to Line 460. If the code and the guess match, R
is increased, a beep is played through the speaker, and a black bar,
C H R $ (1 3 8) - is printed.

You can play Cipher now if you add this instruction:

6 2 0 I F R < P G OTO 3 0 0

This instruction comes later in the program and sends the computer
back for another guess if the number of correct digits R is less than
the number of positions in the code P . Play this limited version of the
game to check your program. The computer will only score black
bars, not black dots, and the code will be very hard to guess. After
you have checked the program, add the second scoring section.

Experiment 6: Score Number
With these added instructions, your program will score both bars and
dots:

5 00 R E M S C O R E N U M B E R .

5 1 0 Y=O

520 FOR A = 1 TO P F O R B = 1 TO P

5 3 0 I F C (A)< > H (B) GOTO 5 7 0

5 4 0 Y=Y+ 1

5 5 0 1 F Y > R TH E N P R I NTC H R $ (1 4 2) ; : S O U N D 1 2 6 . 2

5 6 0 H (B } =O : B = P

5 7 0 N EXT B : N EXT A

In this section, the variable Y is used to keep track of all the digits in
the answer that match a digit in the code. E ach digit in the code is
compared with all digits in the answer to see if there is a match. If
not, the program goes to Line 570 to try the next combination. If the
numbers match, Y is increased.

In Line 550, the computer prints a black dot and plays a beep if Y is
larger than R , the number of black bars. A dot is not printed for
those matching combinations that have already been scored as black
bars.

If you have already added Line 620, you can now play the game with
both bars and dots.

___ _... 1 19

120

Lesson 16: Cipher (continued)

Experiment 7: Score Board
This section of the program checks to see if you have solved the code.
If not, the computer goes back to Line 300 for another guess. Get
the correct answer and this section will play a tune and ask you if
you want to go again.

Add these instructions to complete your program:

6 0 0 R E M . . . S C O R E B O A R D . . .

6 1 0 P R I NT

6 2 0 I F R < P GOTO 3 0 0

640 S O U N D 1 2 6 , 6

6 4 2 S O U N D 1 4 8, 4

6 4 4 S O U N D 2 5 5, 1

6 4 8 S O U N D 1 2 6, 2

6 5 0 S O U N D 1 3 2 , 2

6 5 2 S O U N D 1 4 8, 4

6 6 0 I N PUT "TRY AGA I N (Y, N)" ; K $

6 7 0 I F K $ ="Y" G OTO 3 0

I f the numbers of bars R i s less than the number of positions in the code
P , Line 620 sends the computer back for another guess. Get the code
right and the sequence of sounds in Lines 640 through 652 play a tune.
Then Line 660 asks if you wish to go again. Enter the letter !YI and
the program goes back to the beginning, Line 30. Type any other
letter and the program stops.

Here is the complete listing for Cipher. Extra spaces have been added
between sections.

1 0 R E M . C I PH E R .
2 0 D I M C (7) , H (7)
3 0 C LS 1
40 P R I NT " . . . C I PH E R . .

1 00 R E M . . . I N PUT GAM E . . .
1 1 0 I N PUT " H OW MANY P O S I TI O N S (3
- 7) ; P
1 2 0 I N PUT "H OW MANY N U M B E R S (2
- 9) ; N

2 0 0 R E M . . . S E LECT C O D E . , ,
2 1 0 F O R L= 1 TO P
2 2 0 C (L) = R N D (N)
2 3 0 N EXT L

3 0 0 R E M . . . I N PUT G U E S S . . .
3 0 5 P R I NT
3 1 0 F O R L = 1 TO P
3 2 0 K $ =1 N K EY $: 1 F K $ =" " G OTO 3 2 0
3 3 0 H (L) =AS C (K $) -48
3 4 0 P R I NT " " ; K $;
3 5 0 S O U N D 9 2 , 2
3 6 0 N E XT L
3 7 0 P R I NT "

400 R E M . . . S C O R E PO S IT I O N S . . .
4 1 0 R = O
4 2 0 FO R L = 1 TO P
4 3 0 I F C (L)< > H (L) G OTO 4 6 0
4 4 0 R = R + 1 : S O U N D 1 7 7 , 2
4 5 0 P R I NT C H R $ (1 3 8) ;
460 N E XT L

5 0 0 R E M . . . S C O R E N U M B E R . . .
5 1 0 Y=O
5 2 0 FOR A= 1 TO P : FO R B = 1 TO P
5 3 0 I F C (A)< > H (B) GOTO 5 7 0
5 40 Y=Y+ 1
5 5 0 I F Y > R TH E N P R I NTC H R $ (1 4 2) ;
: S O U N D 1 2 6 , 2
5 6 0 H (B) =O : B =P
5 7 0 N E XT B : N E XT A

6 0 0 R E M . . . S C O R E B O A R D . .
6 1 0 P R I NT
6 2 0 I F R < P G OTO 3 00
6 4 0 S O U N D 1 2 6 , 6
6 4 2 S O U N D 1 4 8, 4
6 44 S O U N D 2 5 5. 1
6 4 8 S O U N D 1 2 6 . 2
6 5 0 S O U N D 1 3 2 , 2
6 5 2 S O U N D 1 4 8, 4

6 6 0 I N PUT "TRY AGA I N (Y, N) " ; K $
6 7 0 1 F K $ ="Y" G OT0 3 0

Lesson 16: Cipher (continued)

--- 121

Lesson 16: Cipher (continued)

Experiment 8: How to Cheat
While you probably wouldn't think of cheating, it doesn't hurt to know
how to look inside a program while it is running and see what is
going on. In this case, you can stop the program, examine the code to
see what it is, and continue running as if nothing had happened. Here
is the procedure.

With the program already running and a code selected by the
computer, stop the program by pressing IBR EAKI. Now you can type
instructions and print any variables to see what they contain. To
print the first letter in the code, for example, type this instruction:

P R I NT C (1)

Notice that there is no line number. This instruction will be acted on
immediately and will not be added to the program.

To print all the numbers in the code, use several P R I NT statements
or use this instruction:

F O R L = 1 TO P : P R I NT C (L) : N EXT L

Again, there is no line number and this short "program" will print
out all the numbers in the code. If you wish to continue with the
program, just type [g][Q][I]IQIO�[Z][Q] and press I ENTER I . The program
will continue as before.

You can use this method to check any variable in a running program
to see what is going on, what might have gone wrong, or to peek at the
answers.

122L....--

KEYBOARD

KEYBOARD

1 0-
40

1 00-
230

300-
370

400-
460

500-

570

600-
620

640-

652

660-
670

Lesson 16: Cipher (continued)

CIPHER I

START

INPUT
GAME

INPUT
GUESS

SCORE
POSITIONS

SCORE
. NUMBERS

- - - - - - - - - POSITIONS (3-7)
NUMBER (2-9)

I

•

,_________,

TU

____,

NE - - - - - - - --oj } }

-- 123

Lesson 17: Math Teacher

Lesson 17: Math Teacher
Time Response Monitoring®

You can program your computer to create arithmetic problems, input
the answers, and score the results. In this lesson you will also use a
special technique called Time Response Monitoring to adjust the skill
level or difficulty of each problem.

Learning the arithmetic facts is one example of a skill that can be
aided by a computer program. Although you probably know your
arithmetic, you will discover in this lesson that computer aided
instruction, or CAI, is a challenging project for your programming
skills . You will begin by writing a simple program to create and
score addition problems. Then you will add the other functions to
build a program that teaches addition, subtraction, multiplication, and
division facts. Finally, you will add feedback by timing the responses
to each problem and continuously adjusting the skill level or
difficulty.

Experiment 1 : Problem Solver
Begin by entering this short program. If there are any other
programs in the computer, type ��� and press I ENTER I to clear the
computer's memory. Type these instructions carefully, and press
I ENTER I after each one.

1 0 A = R N D (1 0)

20 B =R N D (1 0)

30 P R I NT A; "+" ; B ; " =" ;A+B

The computer will select a random value between 1 and 10 for A , and
a random value between 1 and 5 for B . Then the computer will print
the value of A , a plus sign (+) , the value of B , an equal sign (=), and
the correct sum of A +B .

Type IBJ[Q]� and press I ENTER I to run the program and print a
random addition problem on the screen. After the program runs, the
computer prints O K and waits for your next instruction. If you run
the program several times, your screen should look something like
this, with different problems:

O K
R U N

8 + 4 = 1 2
O K
R U N

1 0 + 9 = 1 9

125

Lesson 17: Math Teacher (continued)

O K
R U N

2 + 8 = 1 0
O K

E ach time you run the program, a randomly selected addition problem
and the correct answer are displayed. With the random function you
can generate an endless series of problems like these, selected by
chance.

Experiment 2: Answer Please
Instead of having the answer printed, change the program to print
the problem only. Then, have the student input the answer from the
keyboard. If the answer is correct, instruct the computer to print
R I G H T on the screen. First type [b]OJ�ITJ to see your program:

1 0 A = R N D (1 0)
2 0 B =R N D (1 0)
30 P R I NT A; "+" ; B ; " =" ;A+B

Change Line 30 so that the problem, not the answer, is printed.

3 0 P R I NT A; "+" ; B ; "="

When you press I ENTER I, this instruction replaces Line 30 in the program.
Input and score the answer by adding these instructions:

40 I N PUT C

5 0 I F A + B =C TH E N P R I NT " R I G HT'

Run this program a few times, and try guessing right and wrong answers
to check it. Here is the complete program:

1 0 A =R N D (1 0)
2 0 B = R N D (1 0)
3 0 P R I NT A; "+" ; B ; " ="
4 0 I N PUT C
5 0 I F A + B =C TH E N P R I NT " R I G HT'

Experiment 3: Branching
One way to expand the program is to repeat the problem if the answer
is wrong and create a new problem if the answer is correct. You can
add this feature by changing Line 50 and adding a new instruction,
Line 60. The new Line 50 is too long to fit on your screen. Just
continue typing and the instruction will continue on the next line on
your screen. Remember to press I ENTER I at the end of each
instruction.

126L...---

Lesson 17: Math Teacher (continued)

5 0 I F A+B =C TH E N P R I NT " R I G HT' : G OTO 1 0

6 0 G OTO 3 0

Type �IIJ�[!] and press I ENTER I. Your complete program should
now look like this:

1 0 A =R N D (1 0)
2 0 B =R N D (1 0)
30 P R I N T A; "+"; B " =";
40 I N PUT C
5 0 I F A+B =C TH E N P R I NT " R I G HT' : G
OTO 1 0
6 0 G OTO 3 0

The flowchart in Figure 1 on page 135 shows how the branching
works in this program. Line 50 checks to see if the answer is correct.
If so, the computer prints R I G H T and goes to Line 10 to select a new
problem. If the answer is wrong and A+B is not equal to C , the
instructions in Line 50 are ignored and the computer goes to the next
line in the program, Line 60. This instruction sends the computer
back to Line 30 to print the problem again.

Run this program and notice that it repeats a problem over and over,
until the correct answer is given. Then the computer creates a new
problem. In this example, the program branches to one of two
possible actions, depending on whether the answer is correct or not.
The next experiment uses a similar branching technique to select one
of four possible problems to solve.

Experiment 4: Electronic Flash Cards
Another change that will make this program more fun to use and
more effective as a learning tool is to include subtraction, multi­
plication, and division problems. This new program uses four
short sections to generate the four types of problems. The branching
occurs in Line 40 where the computer goes to one of four places in the
program, depending on the value of G.

To enter this program, press IBR EAKI to stop the previous program.
Type INJ[filf!M and press I ENTER I to erase the old program from the
computer's memory, then enter each of the following instructions:

1 0 A = R N D (1 0)

2 0 B = R N D (1 0)

3 0 I F B > A TH E N 1 0

4 0 G = R N D (4)

--- 127

128

Lesson 17: Math Teacher (continued)

5 0 O N G G OTO 1 0 0, 1 5 0, 2 00, 2 5 0

1 0 0 P R I NT A; " +" ; B ; " =" ;

1 1 0 X =A+B

1 2 0 G OTO 400

1 50 P R I NT A; "-" ; B ; " =" ;

1 6 0 X =A -B

1 7 0 G OTO 400

200 P R I NT A; " *" ; B ; " =" ;

2 1 0 X =A*B

2 2 0 G OTO 400

2 5 0 P R I NT A*B ; " /" ; B ; " =";

2 6 0 X =A

2 7 0 G OTO 400

4 0 0 I N PUT C

4 1 0 I F C =X TH E N 1 0

4 2 0 G OTO 40

Run the program and enter your answer to the first problem. The program
will repeat the problem until you input the correct answer.

How It Works
The flowchart in Figure 2 on page 136 and the following description
show how this program creates an electronic version of the familiar
flash cards used to teach arithmetic facts.

L I N E S 1 0 and 2 0 select two random numbers for A and B .

L I N E 3 0 repeats the selection if B is larger than A . With this
instruction, A-B will always be a positive number. This avoids
negative answers to the subtraction problems.

L I N E 40 sets G equal to a random number from 1 to 4.

Lesson 17: Math Teacher (continued)

LI N E 5 0 sends tne computer to one of four places, depending on the
value of G . This branching allows the program to create a random
assortment of problems in addition, subtraction, multiplication, and
division.

L I N E S 1 0 0- 1 2 0 print an addition problem and set X equal to the
answer.

L I N E S 1 5 0- 1 7 0 print a subtraction problem and set X equal to the
answer.

L I N E S 2 0 0- 2 2 0 print a multiplication problem and set X equal to the
answer.

L I N E S 2 5 0- 2 7 0 print a division problem and set X equal to the
answer. Notice that the answer is the integer A , not a fraction.

L I N E 400 inputs the answer from the keyboard.

L I N E 4 1 0 sends the computer to Line 10 to create a new problem if
the answer is correct.

L I N E 4 2 0 sends the computer to Line 50 to reprint the problem if the
answer is not correct.

Experiment 5 : Input Module
Having to press I ENTER I after typing in the answer is clumsy. You
can avoid the use of the I ENTER I key with this program module that
replaces Line 400. These instructions work together and allow you to
input any number up to three digits long.

The program flowchart (Figure 2) is unchanged. The I N P UT AN SWE R
function is replaced with the I N PUT M O D U LE., Lines 400-490, below.
This and other modules are explained in Section 3.

Press IBR EAKI to stop the program, then add these instructions to
replace Line 400:

400 R E M . . . I N PUT M O D U LE

4 1 0 B $ =" "

4 2 0 A $ =I N K E Y $

4 3 0 I F A $ =" " TH E N 4 2 0

4 4 0 P R I NT A $;

4 5 0 8 $ =8 $ +A $

__ 129

Lesson 17: Math Teacher (continued)

4 6 0 I F X > 9 AN D L E N (8 $) < 2 TH E N 4 2 0

4 7 0 I F X > 9 9 AN D L E N (8 $) < 3 TH E N 4 2 0

4 8 0 P R I NT

4 9 0 I F VA L (8 $) =X TH E N 1 0 E LS E 5 0

Now run the program and notice that you don't have to press the ENTER
key. You do have to type the same number of digits as the correct
answer, however, for the program to work. If the answer is 17 , for
example, you must type two digits before the computer will respond.

How It Works
In this program, the input module uses the string variable A $ to
store each key you type and 8 $ to store the combined keys that make
up the number you input.

The I N K EY function sets A $ to the key you type. Unlike the I N PUT
statement, this function reads the keyboard immediately, and does not
wait for the ENTER key.

Line 450, each key you type is combined with the keys in 8 $. If you
type � and [2J , for example, 8 $ will contain 3 2 .

The function LE N (8 $) shows how many characters (numbers or
letters) are stored in 8 $. The checks in Lines 460 and 470 continue
inputting keys from the keyboard until your answer has the same
number of digits as the correct answer.

Then the two numbers are compared, in Line 490. The function
VAL(8 $) turns 8 $ into its numeric value. If 8 $ contains 2 5,
VAL(8 $) would be the number 2 5 .

Experiment 6: Adjust the Skill Level
One way to adjust the difficulty of the problems this program
generates is to adjust the size of the numbers picked for A and 8 .
Stop the program and type [!)[I]�ITJD[I][Q][][§][Q] to list these lines
of your program.

Add a new instruction to input the skill level, S . Then change R N D
functions so that the numbers A and 8 will be selected from a larger
range of possibilities . With a low skill level of 5, both A and 8 will
be numbers between 1 and 5. With a higher skill level such as 15, both
A and 8 will range from 1 to 15 and the problems will be much more
difficult to solve.

130 ---

Lesson 17: Math Teacher (continued)

To make this change, add these instructions:

5 I N P UT "S K I L L LEVE L" ; S

1 0 A =R N D (S)

20 B =R N D (S)

When you run this version, the computer will ask S K I LL LEVEL? If
you input a l!HID , the program will work as before. To create easier
problems, use a lower number. If you select a skill level that is too
high, or if you wish to change your selection at any time, just press
IBR EAKI and run the program again.

How It Works
Here is the complete listing and full description of each instruction.
The spaces have been added between lines in this listing so that the
sections will match the flowchart in Figure 3 .

5 I N PUT "S K I L L L EVE L" ; S

1 0 A = R N D (S)
2 0 B =R N D (S)
3 0 I F B > A TH E N 1 0

40 G =R N D (4)
50 O N G G OTO 1 00 . 1 5 0. 2 00. 2 5 0

1 00 P R I NT A; " +" ; B ; " =";
1 1 0 X =A+B
1 2 0 G OTO 400
1 5 0 P R I NT A; "-" ; 8 ; " =";
1 6 0 X =A-B
1 7 0 G OTO 4 0 0
2 0 0 P R I NT A; " *" ; B ; " =" ;
2 1 0 X =A*B
2 2 0 G OTO 400
2 5 0 P R I NT A * B ; " /" ; B ; " =" ;
2 6 0 X =A
2 7 0 G OTO 400

400 R E M . . . I N PUT M O D U LE
4 1 0 B $ ="

. .

4 2 0 A $ =1 N K E Y $
4 3 0 I F A $ ="

. .
TH E N 4 2 0

440 P R I NT A $;
4 5 0 8 $ =8 $ +A $
4 6 0 I F X > 9 A N D LE N (8 $) < 2 TH E N 4 2 0
4 7 0 I F X > 9 9 A N D L E N (B $) < 3 TH E N 4 2 0
4 8 0 P R I NT

4 9 0 I F VAL(8 $) =X TH E N 1 0 E LS E 5 0
131

Lesson 17: Math Teacher (continued)

L I N E 5 inputs the skill level, S .

L I N E S 1 0- 3 0 select random numbers from 1 to S for the variables
A and B .

L I N E S 40- 5 0 select the type of problem (+, -, *• or /) and branch to
the appropriate section of the program.

L I N E S 1 00- 2 6 0 print the problem and set the variable X equal to the
correct answer.

L I N E S 4 0 0- 4 8 0 are a program module that inputs a number from the
keyboard without using the ENTER key.

L I N E 4 9 0 tests to see if the number typed is equal to the answer, X .
If so, the program creates a new problem; and if not, the old problem
is repeated.

Press I CLEAR I , type [L][Dl§l!IJO[I]IQJ[Q]c::J�OOIQJ, and press I ENTER I .
The computer will list Lines 100 to 200 on the screen. In Figure 3 on
page 137 these lines are labeled P R I NT P R O B LE M . These same instruc­
tions also appear in Figure 2, where P R I NT P R O B L E M is shown as four
separate functions. There is no "correct" way to draw a flowchart, and
you can combine instructions any way that helps you see the overall
pattern. This entire section, for example, could appear as a block
labeled Math Teacher in a flowchart of this book.

Experiment 7: Math Teacher
This final program is recorded on the Lesson 17 cassette. Load the
program from the cassette with jg[L][QJ�[Q] , and type [B]!Y]INJ .

Type the answers to the problems on the screen as fast as you can . If
you answer quickly and correctly, the problems will include larger
numbers and be more challenging. Miss a few answers or slow down
in your response, and the problems will get easier again. As you
continue to work with this program, the level of difficulty will adjust
to match your skill and give you an ideal challenge that is neither
boring nor too difficult. After 20 problems, you get a report card and
the chance to go again.

This programming technique is called Time Response Monitoring, or
TRM. In this program, the response time is monitored and used to
control the average difficulty of the problems.

How It Works
The flowchart in Figure 4 on page 138 shows that three program
modules are used for I N PUT , TR M , and R E PO RT C A R D . These and
other modules are described in Section 3.

1321---

Lesson 17: Math Teacher (continued)

L I N ES 1 - 2 5 initialize the program by setting the skill level S to 5
and the number of errors E to 0. The FO R /N EXT loop is set to
cycle 2 0 times and create 2 0 problems before displaying the report
card.

The variable S is continuously adjusted to vary the skill level. This
level may be increased or decreased after each answer, depending on
the response time. Answer quickly and S is increased. Take longer
or get a wrong answer and S is reduced.

L I N E S 2 9- 7 0 create the problem, using two random numbers A and
B . At the start, A and B are random numbers from 1 to 5. If the
skill level increases, S will increase, and the random numbers will
be selected from a larger range. In Line 70 the program branches to
one of four sections, depending upon the random value of G .

L I N E S 9 9- 2 6 0 print the problem on the screen. Four separate sections,
beginning at Lines 100, 150, 200, and 250, are used to create addition,
subtraction, multiplication, and division problems. In each section,
the variable X is set equal to the correct answer.

L I N E S 4 0 0- 4 8 0 are an input module that gets a number from the
keyboard. This module eliminates using the ENTER key after each
number.

L I N E S 5 0 0- 6 2 0 are the T R M module that measures the response time
and adjusts the skill level after each problem. This module increases
or decreases the variable S that is used in Lines 30 and 40 to select
the numbers A and B .

L I N E 6 3 0 completes the F O R /N E XT loop. If less than 20 problems
have been answered, this instruction sends the computer back to Line
25 to create another problem.

L I N ES 7 00- 7 8 0 are a report card that prints the results. This program
module also inputs a key from the keyboard. If the key pressed is Y ,
the program continues with the current skill level and 20 new problems.

1 R E M . . . M ATH TEAC H E R . . .
1 0 S = 5 : C LS
2 0 E =O
2 5 FO R L = 1 TO 2 0

2 9 R E M . . . C R EATE P R O B LE M
3 0 A = R N D (S)
40 B =R N D ($)
5 0 I F A< B TH E N G OTO 3 0
(J O G = R N D (4)
1 0 O N G G OTO 1 00 . 1 5 0. 2 0 0. 2 5 0

9 9 R E M . . . P R I NT P R O B L E M
1 00 P R I NT A; " +" ; B ; " = "

--- 133

Lesson 17: Math Teacher (continued)

1 1 0 X =A+B
1 2 0 G OTO 400
1 5 0 PR INT A; "-"; B ; " = "
1 6 0 X =A-B
1 7 0 G OTO 4 0 0
2 00 P R I NT A " *" ; B ; " = "
2 1 0 X =A *B
2 2 0 G OTO 400
2 5 0 P R I NT A *B ; " /" ; B ; " = "
2 6 0 X =A

400 R E M I N P U T M O D U LE
4 1 0 8 $ =" " :T=O
420 A $ =I N K EY $
4 2 5 T=T+ 1
4 3 0 I F A $ =" " TH E N 4 2 0
4 4 0 P R I NT A $;
4 5 0 B $ =B $ +A $
4 6 0 I F X > 9 AN D L E N (B $) < 2 T H E N 4 2 0
4 7 0 I F X > 9 9 AN D L E N (B $) < 3 TH E N 4 2 0
4 8 0 P R I NT

500 R E M . . . T R M M O D U L E . . .
5 1 0 I F VA L (B $) =X TH E N 6 0 0
5 2 0 P R I NT " S O R RY, TH E A N S W E R I S " ; X
5 3 0 E = E + 1
5 4 0 S =S -4
5 50 G OTO 7 0
6 00 I F T >400 TH E N T=400
6 1 0 S =S + 2 -I NT(T / 1 00)
6 2 0 I F S < 5 TH E N S = 5
6 3 0 N EXT L

7 00 R E M . . . R E P O RT C A R D
7 1 0 C LS : P R I NT
7 2 0 P R I NT " . . . R E PO RT CAR
D . . . " : P R I NT
7 3 0 P R I NT " YO U G OT'; 2 0 -E"
7 4 0 P R I NT " OUT O F 2 0 C O R R E C T'
: P R I NT
7 5 0 P R I NT " YO U R S K I LL LEV E L I
S "; S : PR I NT
7 6 0 P R I NT " SAM E P LAY E R G O AGA
I N (Y, N) ?"
7 7 0 Y $ = 1 N K EY $: 1 F Y $ =" " TH E N 7 7 0
7 8 0 I F Y $ ="Y" TH E N C LS : G OTO 2 0

Time Response Monitoring and TRM programming are registered
trade marks of The Image Producers, Inc.

134---

KEYBOARD

1 0 P ICK RANDOM
20 NUMBERS

30

40

50

60

PRINT
PROBLEM

INPUT
ANSWER

YES

NO

REPEAT

Lesson 17: Math Teacher (continued)

MATH
TEACHER

FIG. 1

PRINT
" RIGHT"

2 + 3 = ?

2 + 3 = 5

RIGHT

-- 135

Lesson 17: Math Teacher (continued)

KEYBOARD

1 0-
30

40-
50

1 00-
1 20

1 50-
1 70

200-
220

250-
270

P ICK RAN D O M
N UMBERS

A & B

S E LECT TYPE
OF PROBLEM

400

4 1 0

420

INPUT
ANSWER

YES CORRECT "'-------'
?

NO

REPEAT
P RO B L E M

MATH
TEACHER

FIG . 2

P R I NT
PROBLEM

P RINT
PROBLEM

PRINT
PROBLEM

P R I NT
PROBLEM

CREATE
NEW

PROBLEM

�

A + B = ?

A - B = ?

A X B = ?

A * BIB = ?

-

A + B = C

1361---

5

KEYBOARD

1 0-30

40-50

1 00-260

400-480

KEYBOARD

Lesson 17: Math Teacher (continued)

MATH
TEACHER

FIG. 3

RUN

ADJUST
SKILL LEVEL

P ICK
NUMBERS

A & B

SELECT TYPE
OF PROBLEM

490

PRINT
PROBLEM

YES

- - - - - - - - - 2 + 3 = ?

2 + 3 = 5

lO R lffCl �-- NEW
PROBLEM .,

NO

REPEAT
PROBLEM

__ _. 137

Lesson 17: Math Teacher (continued)

..

KEYBOARD

1 -25

29-70 START

99-260

400-480

500-620

KEYBOARD

CREATE
PROBLEM

PRINT
PROBLEM

INPUT
ANSWER

TRM
MODULE

700-780

MATH
TEACHER

FIG. 4

REPORT
CARD

YES

-

2 + 3 = ?

REPORT CARD
YOU GOT 19
OUT OF 20
GO AGAIN (Y .N)

1381--

Lesson 18: Hangperson

Lesson 18: Hangperson
String Manipulation and Game Design

In this lesson you will create your own version of a popular logic
game. You will begin by building a short program and then add
features and improvements to the design.

E ach section in the short program is expanded and improved to create
the final game. You can begin with Experiment 1 and create the game
from scratch, or load Lesson 18 from the cassette and see the final
result before you study this lesson in detail.

The first two experiments show how ASCII numbers are used for
representing characters on the keyboard and how strings or words can
be measured and evaluated. With this background you will then write
a short program for playing the game.

Experiments 5 through 9 expand that program and add many features
to make it easier and more fun to play.

This programming technique - building a simple version of a program
and expanding its features - is a very good design method. Follow
along as these experiments show you how to create Hangperson - a
word guessing game for two people.

Experiment 1: ASCII Numbers
Your color computer uses a number code to represent the keys on the
keyboard. You can find the number associated with each key with this
short program. Clear your computer with �[ID� and enter these
instructions:

1 0 I N PUT X $

2 0 P R I NT X $; AS C (X $)

3 0 G OTO 1 0

Run the program, press any key, then press I ENTER I . The computer will
set the string variable X $ equal to the key you type, print the key and
its ASCII number, and go back to the beginning for another input. Try
inputting letters to see the range of numbers used for the alphabet.
Depending on the letters you pick, your screen could look like this:

? A
A 6 5
? B
B 6 6
? c
c 6 7 139

140

Lesson 18: Hangperson (continued)

The ASCII numbers 6 5 , 6 6, and 6 7 are used to represent the letters A ,
B , and C . The complete alphabet is represented by the ASCII
numbers 6 5 (A) through 90 (Z).

Punctuation, numbers, and symbols also have ASCII numbers. Try
typing the hyphen c::::J and see that its ASCII number is 4 5 . The colon
and the comma are used by the computer as control words.

Experiment 2: LEN and MID Functions
You can use the LE N function to find the number of characters in a
string. In Hangperson, this function is used to find out how many
letters are in the code word. Stop the program with IBR EAKI and
change Line 20 by entering this new instruction:

2 0 P R I NT L E N (X $)

Now run the program. Enter any word and the computer will print the
number of characters in the word, like this:

? A
1

? ALL
3

? A L P H A B E T
8

?

The M I D function can also be used to print any specific character in
a string or word. Stop the program and change Line 20 to this new
instruction:

2 0 P R I NT M I D $ (X $. 3 , 1)

The number 3 tells the computer to skip to the third character, and the
number 1 is the number of characters after that to be printed. In this
example, the function prints the third letter in the word you enter.

Run the program and enter a word. When you press I ENTER I . the
computer will print the third letter or character in the word, like this:

? TE ST
s
? C O M PUTE R
M
? 4 5 6 7 8
6
?

Lesson 18: Hangperson (continued)

In each case, the computer printed the third character. You can also use
the M I D function to print any other portion of a string by changing the
numbers 3 and 1 in the instruction. Later in the program you will
use the M I D function to check each letter in the code word.

Experiment 3: Input Word and Load Array
The first step in designing Hangperson is putting the code word into
the program and creating an array to store the characters that have
been guessed correctly. The program begins by setting the variable
W $ equal to the code word. Then the array S is dimensioned to hold
a number for each character in the code word, W $. E ach of these
positions in the array is set equal to the number 4 5 .

Later you will use this array to store the ASCII numbers for the .
letters that have been guessed correctly. For now, each position in the
array holds the number 45 - the ASCII number for a hyphen or dash.

Begin building Hangperson by clearing the computer with � [§ � and
entering these instructions:

1 0 I N P UT W $

2 0 D I M S (L E N (W $))

3 0 F O R L = 1 TO LE N (W $)

4 0 S (L) =4 5

5 0 N E XT L

Experiment 4: Print the Array
This next section in the program prints the characters whose ASCII
numbers are stored in the array. If the array contained the numbers
6 5, 6 6, and 6 7 , for example, these instructions would print the
characters A , B , and C on the screen. Now add this section of the
program that begins on Line 300 with a remark and prints the
characters whose ASCII numbers are stored in the array.

3 0 0 R E M P R I NT AR RAY

3 1 0 F O R L = 1 TO LE N (W $)

3 2 0 P R I NT C H R $ (S (L)) ;

3 3 0 N E XT L

--- 141

Lesson 18: Hangperson (continued)

Type [][]�[!] and press I ENTER I to see the complete program. Compare
your listing to the one below and correct any errors. (Blank lines are
added to separate this listing into the three sections shown in the
flowchart.)

1 0 I N P U T W $

2 0 D I M S (L E N (W $))

3 0 F O R L = 1 TO LE N (W $)

4 0 S (L) = 4 5

5 0 N E XT L

3 0 0 R E M . P R I NT A R RAY

3 1 0 F O R L = 1 TO L E N (W $)

3 2 0 P R I NT C H R $ (S (L)) ;

3 3 0 N E XT L

A flowchart for this program is shown in Figure 1 on page 151.
As you can see, the computer will create an array with a position for
each letter in the word. Then the computer will fill the array by
storing the number 4 5 in each position. Finally, the numbers stored in
the array are converted to characters and printed.

Run the program and enter a code word. The computer will print a
dash for each letter in the word, like this:

? T E S T I N G

O K

Experiment 5: Input and Score Guess
With these additions, you will be able to play Hangman. Add these
instructions to input a letter and score the results:

1 00 C LS

1 1 0 I N P UT G $

2 0 0 R E M S C O R E
2 1 0 F O R L = 1 TO L E N (W $)

2 2 0 I F G $ = M I D $ (W $. L, 1) G OTO 2 4 0

2 3 0 G OTO 2 5 0

2 4 0 S (L) =A S C (G $)

2 5 0 N E XT L

After clearing the screen in Line 100, the computer will set G $ equal to
a letter typed on the keyboard. Then the letter is compared with each
character in the code word. If they are equal, the computer sets the
matching position in the array equal to the ASCII number of the letter.
Finally, the numbers stored in the array are converted to characters
and printed.

142L---

Lesson 18: Hangperson (continued)

Run the program, enter !I][g]l§J!IllIJ�lgj as the code word, and then
enter the letter T . Your screen should look like this:

? T
T--T--­
O K

A s you can see, the code word has seven letters. The· first and the
fourth letter are T .

One more change will complete the program. Add this instruction and
cause the program to loop back for another guess after printing the
array:

4 0 0 G OTO 1 1 0

Run the program again, enter IIJ[g)�IIJ[]�� for the code word
and then try these letters: T , A , S , I , G . Your screen will show:

? T
T--T---? A
T--T---? S
T- S T---? I
T- S T 1 --? G
T- S T l - G ?

E ach letter you input that matches a letter in the code word i s added
to the printout. Continue entering letters to complete spelling the code
word. Notice that the computer keeps track of the letters that match
the code word to show your progress.

Hangperson is now complete and you can play the game with a friend.
You can run the program, enter a code word (without showing your

· friend), and then have your friend try to guess the word by entering
letters. After the word has been guessed, press IBR EAKI to stop the
program. To go again, run the program and input a new code word.

The flowchart for the program is shown in Figure 2 on page 152 and
the complete listing is shown below.

1 0 I N PUT W $

2 0 D I M S (LE N (W $ })
3 0 F O R L = 1 TO L E N (W $)
40 S (L} =4 5
5 0 N EXT L

1 00 C LS
1 1 0 1 N PUT G S

-- 143

Lesson 18: Hangperson (continued)

2 0 0 R E M . . . S C O R E . . .
2 1 0 F O R L = 1 TO L E N (W $)
2 2 0 I F G $ = M I D $ (W $. L, 1) G OTO 2 4 0
2 3 0 G OTO 2 5 0
2 4 0 S (L } =AS C (G $)
2 5 0 N EXT L

3 0 0 R E M . . . P R I NT A R RAY
3 1 0 F O R L = 1 TO L E N (W $)
3 2 0 P R I NT C H R $ (S (L)) ;
3 3 0 N EXT L

400 G OTO 1 1 0

Experiment 6: Improve Inputs
Now that the basic game is running, you can begin adding improve­
ments to the program. These next experiments add details that make
the program much more interesting.

Begin by changing Line 10 so that it clears the screen and prints the
message C O D E WO R D in addition to setting the word you type equal
to W $.

1 0 C LS : I N P UT ;"C O D E WO R D" ; W $

The next improvement i n the program will eliminate pressing the
ENTER key after each letter you guess. Replace the standard input
instruction in Line 1 10 with these lines:

1 1 0 G $ =1 N K EY $
1 2 0 I F G $ =" " GOTO 1 1 0
1 3 0 P R I NT G $

The difference between using I N PUT and I N K EY $ is that I N PUT
requires the I ENTER I key after each letter. These instructions loop
(repeat} until a key is pressed, then G $ is set equal to the character
and printed automatically. Run the program again and see how these
cham.ges improve th� game.

Experiment 7: Add Sound Effects
These instructions add sound effects whenever you guess a letter
correctly, and play random sounds to match the printout:

2 4 5 S O U N D 1 0 0. 2

3 2 5 S O U N D S (L } , 1

Run the program, enter a fairly long word, adjust the volume on your TV,
and try this addition to the program.

144 .._ __ __

Lesson 18: Hangperson (continued)

Experiment 8: Allow Only Eight Guesses
The classic Hangperson game only allows eight wrong answers. Add
this feature by using the variable W to store the number of guesses
that don't match a letter in the code word. If W is less than 8, the
game continues. If W equals 8, the person is hanged and the game
is over.

Begin by listing the scoring section of the program by pressing
ICLEARI and entering [b]OJ�[I]O�[Q][Q][]��[QJ. Your screen will
show:

2 00 R E M . . . S C O R E . .
2 1 0 F O R L = 1 TO L E N (W $)
2 2 0 I F G $ = M l 0 $ (W $, L 1) G OTO 2 4 0
2 3 0 G OTO 2 5 0
2 4 0 S (L) =AS C (G $)
2 4 5 S O U N D 1 0 0, 2
2 5 0 N E XT L

Add this instruction to the beginning of the program. This sets W, the
number of wrong answers, to 0 when the program starts.

6 0 W = O

A wrong answer i s scored only if the letter picked G $ does not match any
letter in the code word W $. To keep track of any match, add these
two instructions. Line 205 sets M , the number of matches , to 0 when
the scoring begins. Line 247 sets M equal to 1 if G $ matches a
letter in the code. With these changes, M will be 0 if G $ does not
match any letter in the code word.

2 0 5 M = O

2 4 7 M = 1

Now you can test to see if M is zero, and increase W if it is not, with this
instruction:

2 6 0 I F M =O TH E N W=W+ 1

The final step will change the program so that it only allows eight wrong
guesses. This new instruction replaces Line 400 and sends the
computer back for another input only if the number of wrong guesses
is less than 8:

400 I F W < 8 G OTO 1 1 0

As a final touch, add this instruction to print the correct answer if the
number of wrong answers exceeds the limit (and the game is lost) .

-- 145

Lesson 18: Hangperson (continued)

4 1 0 P R I NT "S O R RY"

4 2 0 P R I NT "TH E A N SWE R WAS"

430 P R I NT W$

With these changes, the program repeats if the number of wrong answers
is less than 8, and prints the answer if there are 8 mistakes.

Experiment 9: Test for Correct Answer
With these three instructions your program will check to see if the
code word has been broken. If all the letters in the code have been
guessed, the program will print a winning message and stop. An easy
way to test for the correct answer is to see if there are any dashes left
in the array. If there are no dashes, then all letters have been guessed
correctly.

Set the variable D to 0 before printing the array. As the array is
printed, check each position in the array and set D equal to 1 if any
dashes are present. Remember that the array will contain the number
4 5 if a dash is printed on the screen. If there are no dashes D = 0 , print
the message in Line 340 and end the program.

3 0 5 D =O

3 2 2 I F S (L} =4 5 TH E N 0 = 1

3 4 0 I F D =O TH E N P R I NT : P R I NT " YOU WI N ! " : E N D

Now run this version of the program and see if the improvements make
the game easier and more fun to play.

Experiment 10: Compare Designs
Compare the present design, shown in Figure 3 , with the previous
design in Figure 2. Except for the ending sequence that limits the
game to eight wrong answers, and the winning announcement, the
two designs are very much alike.

A good programming technique is to build a simple version of a
design; then add improvements and expansions. You can create
longer or more complex programs by working in small steps and
testing the results as you go along.

A listing of the complete program is shown on the next page. As before,
blank lines have been added to separate the listing into sections that
match the flowchart.

146'---

Lesson 18: Hangperson (continued)

The program for the next experiment is recorded on the Lesson 18
cassette, This version of Hangperson uses a slightly different screen
format and includes a picture that "grows" with every guess that
doesn't match the code word.

1 0 C LS : I N PUT "C O D E WO R D" ;W$
20 D I M S (LE N (W $))
3 0 F O R L= 1 T O LE N (W $)
40 S (L) = 4 5
5 0 N EXT L
6 0 W = O

1 00 C LS
1 1 0 G $ =1 N K EY $
1 2 0 I F G $ =" " G OTO 1 1 0
1 3 0 P R I NT G $

2 00 R E M . . . S C O R E . . .
2 0 5 M =O
2 1 0 FO R L = 1 TO L E N (W $)
2 2 0 I F G $ =M I O $ (W $, L, 1) G OTO 2 4 0
2 3 0 G OTO 2 5 0
2 4 0 S (L) =AS C (G $)
2 4 5 S O U N D 1 00, 3
2 4 7 M = 1
2 5 0 N EXT L
2 6 0 I F M =O TH E N W=W+ 1

3 0 0 R E M . . . P R I NT A R RAY
3 0 5 D =O
3 1 0 F O R L = 1 TO L E N (W $)
3 2 0 P R I N T C H R $ (S (L)) ;
3 2 2 I F S (L) =4 5 TH E N D = 1
3 2 5 S O U N D S (L) , 1
3 3 0 N EXT L

3 4 0 I F D =O TH E N P R I NT : P R I NT "YO U
WI N !" : E N D

4 0 0 I F W < S G OTO 1 1 0
4 1 0 P R I NT " S O R RY"
4 2 0 PR I NT "TH E A N S WE R WAS "
4 3 0 PR I NT W$

Experiment 1 1: Hangperson
This word guessing game is usually played by two people. One person
programs a secret code word and the other tries to guess what it is.
Letters are guessed one at a time. If the letter guessed is contained in
the word, the letter is shown in its correct position. Guess a letter
that is not in the word and the Hangperson picture grows. If you miss
eight letters, the picture is complete, and the person is hanged.
-- 147

Lesson 18: Hangperson (continued)

Begin by loading the Lesson 18 cassette with [g[b:]IQ][AJ[QJ, then run
the program. When C O D E W O R D ? appears, type any word and press
.IENTERI. Then a second person can type letters one at a time and try
to guess the secret word.

Play the game several times and see what the program does when
right and wrong guesses are made, then try playing this game with
a friend. The flowchart in Figure 4 on page 154 shows how the
program is designed. Notice that the computer can take one of several
paths, depending on the status of the game. For example, if the last
letter guessed was not correct, the computer will respond YES to the
question N O MATC H ? The next step will be to print the picture on the
screen. If there are less than eight wrong answers, the computer will
go back to Line 100 to input another guess. If this is guess number
eight, the computer will print the correct answer and ask if you wish
to try again.

Play the game several times, using the flowchart to see what the
computer is doing as you run the program.

How It Works
If you haven't done the experiments in this lesson, you could see how
it works by starting with Experiment 1 and building this program step
by step. You will quickly see how an easier version can be written
with only a few instructions. Then follow the experiments as each
section in the program is expanded. The picture is created with
graphics characters, as explained in Lesson 2 1: Graphics.

The following listing shows the complete program as recorded on the
cassette. Spaces have been added to this listing to match the flow­
chart in Figure 4.

1 R E M . . . H AN G P E R S O N
1 0 C LS : I N PUT " C O D E WO R D"; W $
2 0 D I M S (L E N (W $))
3 0 F O R L = 1 T O L E N (W $)
40 S (L) =4 5
5 0 N E XT L
6 0 W= O

1 00 C LS
1 05 P R I NT " . . HAN G PE R S O N

1 0 7 P R I NT " G U E S S A LETTE
R"
1 1 0 G $ = 1 N K EY $
1 2 0 1 F G $ =" " G OTO 1 1 0
1 3 0 P R I NT @ 7 2 . G $; " ; "

148 --

2 0 0 R E M . . . S C O R E . . .
2 0 5 M =O
2 1 0 FO R L = 1 TO LE N (W $)

Lesson 18: Hangperson (continued)

2 2 0 I F G $ = M I D $ (W $, L, 1) G OTO 2 4 0
2 3 0 G OTO 2 5 0
2 40 S (L) =AS C (G $)
2 4 5 S O U N D 2 00. 6
2 4 7 M = 1
2 5 0 N EXT L
2 6 0 I F M =O TH E N W=W+ 1

3 0 0 R E M . . . P R I NT A R RAY
3 0 5 D =O
3 1 0 F O R L = 1 TO L E N (W $)
3 2 0 P R I NT C H R $ (S (L)) ;
3 2 2 I F S (L) =4 5 TH E N D = 1
3 2 5 S O U N D S (L) . 1
3 3 0 N EXT L

3 40 I F D =O TH E N P R I NT @448. "YO U
WI N ! " : G OTO 4 2 0

3 5 0 I F M =O TH E N G O S U B 5 0 0

4 0 0 I F W < 8 G OTO 1 1 0
4 0 5 P R I NT
4 1 0 P R I NT @448." S O R RY. THE WO R D

WAS : " ;W $

4 2 0 P R I N T "TRY AGAI N (Y. N) ?";
4 3 0 X $ = 1 N K EY $: 1 F X $ =" " G OTO 4 3 0
4 4 0 I F X $ ="Y" TH E N R U N E LS E E N D

5 0 0 R E M . . . D RAW PI CTU R E S
5 0 8 R E STO R E
5 1 0 F O R Y = 5 T O 5 +W
5 2 0 FO R X = 1 1 TO 1 7
5 2 5 R EA D C
5 2 7 S O U N D C . 1
5 2 8 P R I NT @3 2 *Y+X."+";
5 3 0 P R I NT @3 2 *Y+X;C H R $ (C) ;
5 4 0 N EXT X : N E XT Y
5 6 0 R ETU R N

6 0 0 DATA 2 0 8. 2 1 1 . 2 1 5. 2 1 1 . 2 1 9. 2 1 1
, 2 0 8
6 1 0 DATA 1 4 5, 2 2 3. 2 5 4. 2 2 3. 2 5 3. 2 2 3

' 1 4 6
6 2 0 DATA 2 08. 2 2 0. 2 2 3 . 2 2 3 . 2 2 3 . 2 2 0
, 2 0 8

--__. 149

Lesson 18: Hangperson (continued)

6 3 0 DATA 2 1 1 , 2 1 1 . 2 1 1 . 2 2 3. 2 1 1 . 2 1 1

' 2 1 1
6 4 0 DATA 2 2 3 . 2 0 8. 2 2 3 . 2 2 3 , 2 2 3 . 2 08
. 2 2 3
6 5 0 DATA 2 2 3, 2 0 8, 2 2 3 , 2 2 3 , 2 2 3 , 2 08
, 2 2 3
6 6 0 DATA 2 54 , 2 0 8, 2 2 3 , 2 2 0, 2 2 3, 2 0 8
, 2 5 3
6 7 0 DATA 2 08 , 2 0 8, 2 2 3 , 2 08, 2 2 3, 2 0 8
, 2 0 8
6 8 0 DATA 2 08, 2 43 , 2 5 1 . 2 08, 2 4 7 , 2 4 3
, 2 0 8

150'---

KEYBOARD

Lesson 18: Hangperson (continued)

HANG PERSON
FIG. 1

1 0

INPUT
CODE WORD

20-50

LOAD
ARRAY

400-430

PRINT
ARRAY

END

- ? TESTING

---' 151

Lesson 18: Hangperson (continued)

1 0

HANG PERSON
FIG. 2

RUN

KEYBOARD I-----'� co�P�bRo/- - - - - - - - - - -
.._ ____ __,

KEYBOARD

20-50

LOAD
ARRAY

1 00- 1 1 0

200-250

SCORE

300-330

400

PRINT
ARRAY

REPEAT

� - - - - - - - - - -

? TESTING

s

_ _ s _ _ _ _

152'---

1 0

KEYBOARD

20-60

1 00- 1 30
KEYBOARD

200-260

300-330

Lesson 18: Hangperson (continued)

HANG PERSON
FIG . 3

INPUT
CODE
WORD

LOAD
ARRAY

INPUT
LETTER

SCORE

PRINT
ARRAY

- - - - - - - - - - - - CODE WORD?

G

T _ _ T _ _ _

YOU WIN !

SORRY
THE ANSWER

WAS
TESTING

--
-- 153

Lesson 18: Hangperson (continued)

KEYBOARD

KEYBOARD

YES

HANG PERSON
FIG . 4

INPUT

CODE
WORD

1 00- 1 30

GUESS A
LETTER

200-260

SCORE

300-330

PRINT
RESULTS

340

350

400-
4 1 0

420-
440

PRINT
ANSWER

NO

- - - - - - - - - - - - - - - - - - CODE WORD?

- - - - - - - - - - - - - - - - - - C - - P - - ER

500-680

PRINT
PICTU RE

RUN

END

- 0

THE WORD
WAS:
COMPUTER

1541--

Lesson 19: Music Teacher

Lesson 19: Music Teacher

Music Instruction and Game Design

There are several computer games on the market that create random
tunes and test your ability to repeat each note correctly. Music Teacher
is a software version of these games and uses the computer keyboard
to input the notes.

This lesson begins with a review of the S O U N D command. Then you
will create an instrument, using the computer keyboard and the
numbers 1 through 8 to play one octave in the key of C .

Program modules are used to input keys from the keyboard and to
play music notes. The final version of Music Teacher can be loaded
from the Lesson 19 cassette or created by following these experiments.

Experiment 1: Sound F,D
Begin by typing ��� to clear any old programs, then enter these
instructions:

1 0 I N PUT F, D

2 0 S O U N D F, D

3 0 G OTO 1 0

Run this program, adjust the volume on your TV, and enter numbers
between 1 and 255 for the frequency F and the duration D of a
musical tone. You will have to press I ENTER I after each number. The
first number you enter determines the pitch, with lower numbers
producing a lower pitch. The second number sets the duration of the
tone, with 1 being a short note and 255 being a very long note. To play
a music scale, enter the numbers below.

When you run the program, the computer will print a question mark.
Type the first number to select the frequency. Then the computer will
type a double question mark. Type the second number to select the
duration. With both numbers entered, the computer will play the note.

8 9, 2
1 08, 2
1 2 5, 2
1 3 3 , 2
1 4 7 , 2
1 5 9 , 2
1 7 0. 2
1 7 6, 2

-- 155

Lesson 19: Music Teacher (continued)

Experiment 2: Do-Re-Mi

Type IMJ[g]� and press [ENTER I to clear the previous program, then
enter this new program that plays a musical scale when you input the
numbers 1 through 8.

Line 200 sets the variable N equal to the number you input. The
instructions beginning at Line 600 convert N to a frequency number
that matches a note in the musical scale. The sound is created with
frequency 7 and duration 2.

2 0 0 I N PUT N

6 0 0 R E M P R I NT & P LAY . . .

6 1 0 P R I NT N

6 2 0 I F N = 1 TH E N F = 8 9

6 3 0 I F N = 2 TH E N F = 1 08

6 4 0 IF N = 3 TH E N F = 1 2 5

6 5 0 I F N =4 TH E N F = 1 3 3

6 6 0 I F N = 5 TH E N F = 1 4 7

6 7 0 I F N = 6 TH E N F = 1 5 9

6 8 0 I F N = 7 TH E N F = 1 7 0

6 9 0 I F N = 8 TH E N F = 1 7 6

7 0 0 S O U N D F, 2

7 1 0 G OT0 2 0 0

Run this program and enter numbers from 1 to 8 to play a musical scale.
As before, you will have to press the IENTERl key after each number.
Lines 600 to 690 are a look-up table that converts these numbers into
frequency numbers that match the scale in the key of C. To play a
tune, try these numbers: 3, 2, 1 , 2 , 3, 3, 3, 2, 2, 2, 3, 5, 5 .

Experiment 3: Input Note
You can eliminate using the ENTER key after each note with this next
change. The I N K E Y $ command reads the ASCII value of any key that
is pressed, and does not wait for the ENTER key. Line 220 converts
this ASCII value into a number between 1 and 8.

156 --

Lesson 19: Music Teacher (continued)

2 00 R E M . . . I N PUT N OTE . . .

2 1 0 N $ = 1 N K EY $: 1 F N $ =" " G OTO 2 1 0

2 2 0 N =AS C (N $) -4 8

Run this version of the program and see that the computer keyboard is
much more like a piano or organ with this change.

The flowchart in Figure 1 on page 168 shows what the program is
now doing. The I N PUT N OTE section takes a key from the keyboard
and sets N equal to the number typed. Then the P R I N T & P LAY
section converts the number into a frequency and plays the note with
a duration of 2 .

Here is a complete listing of the program in Figure 1 :

2 00 R E M . . . I N PUT N OTE . . .
2 1 0 N $ = 1 N K EY $: 1 F N $ =" " G OTO 2 1 0
2 2 0 N =AS C (N $) -4 8

6 0 0 R E M . . . P R I NT & P LAY
6 1 0 P R I N T N
6 2 0 I F N = 1 TH E N F = 8 9
6 3 0 I F N = 2 TH E N F = 1 0 8
6 4 0 I F N = 3 TH E N F = 1 2 5
6 5 0 I F N =4 TH E N F = 1 3 3
6 6 0 I F N = 5 TH E N F = 1 4 7
6 7 0 I F N =6 TH E N F = 1 5 9
6 8 0 I F N = 7 TH E N F = 1 7 0
6 9 0 I F N =8 TH E N F = 1 7 6
7 00 S O U N D F . 2
7 1 0 G OTO 2 0 0

Experiment 4: Add Subroutine
Lines 600-710 are a set of instructions that can be used in any program
to convert a series of numbers into notes. You will use these
instructions in two places in the final program. Whenever you have a
set of instructions like these that are used more than once in a
program, it can be helpful to create a subroutine.

The instruction G O S U B 600 tells the computer to transfer the program
to Line 600. When the computer reads the word R ETU R N , it transfers
the program back to the line following the G 0 S U B . Add these lines to
your program to create the subroutine:

2 3 0 G O S U B 6 0 0

2 40 G OTO 2 0 0

7 1 0 R ETU RN
--' 157

Lesson 19: Music Teacher (continued)

If you run the program you will see that it works exactly the same as
before. The flowchart in Figure 2 on page 169 shows how the flow of
the program has changed, however, with the P R I NT & P LAY section
acting as a subroutine, rather than part of the main program. This
will be an advantage later, when you will use the subroutine again.

Experiment 5: Create a Game
Look ahead to Figure 3 on page 170 and see how the program
becomes a game by adding four short program sections. Enter these
next lines to form the START section of the program. This section
will create an array S (1 5) to hold numbers representing notes in a
tune, set the total number of notes in the tune T to 0 , clear the
screen, and print the title.

1 0 R E M . . . M U S I C TEAC H E R

2 0 D I M S (1 5)

30 T = O

4 0 C LS

5 0 P R I NT " . . . M U S I C TEAC H E R

The A D D A N EW N OTE section adds a random note to the song by picking
a random number from 1 to 8 and storing it in the array at position S (T) .

1 00 R E M . . . AD D A N EW N OTE . . .

1 1 0 C LS

1 2 0 T =T+ 1

1 3 0 S (T) =R N D (B)

These instructions cycle once for each note i n the song. They send the
computer to the P R I NT & P LAY subroutine to play the note and print
its number on the screen. After the song is played, the screen is
cleared.

1 5 0 R E M . . . P LAY S O N G

1 6 0 F O R L = 1 TO T

1 7 0 N =S (L) : G O S U B 6 0 0

1 8 0 N EXT L

1 9 0 C LS

158'---

Lesson 19: Music Teacher (continued)

These next few instructions create a loop so that the I N P UT N OTE
section cycles once for each note in the song. The P R I NT & P LAY
subroutine is used to play the note typed on the keyboard. If any note
doesn't match, the computer starts over with a new tune. If there are
no mistakes, the computer goes to Line 1 00 to add another note to
the tune.

2 0 5 F O R L = 1 TO T

2 3 0 G O S U B 6 0 0

2 4 0 I F N < > S (L) G OTO 3 0

2 5 0 N EXT L

2 6 0 G OTO 1 00

Now run the game. The computer will pick a random note, play it, and
print its number. Match the note on the keyboard and the computer will
play a two-note song for you to copy. Try to copy as many notes as you
can. If you make a mistake, the computer will start over with a new tune.

In the next few experiments, you will add several features including a
display that shows you the music being played and some sound
effects. You can continue to expand this software or load the final
program from the Lesson 19 cassette.

How It Works
Here is the complete program listing. This program is shown in
Figure 3. The subroutine beginning in Line 600 is used two places in
the program. In the P LAY S O N G section, the variable N is set equal
to each number in the array. The subroutine converts N into a
frequency and plays the note. The I N PUT N OTE section also uses the
subroutine to play the note. Here, N is set equal to the key typed on
the keyboard before the subroutine is used. In both cases, the variable
N stored the number of the note being played.

1 0 R E M . . M U S I C TEAC H E R . . .
2 0 D I M S (1 5)
30 T = O
40 C LS
5 0 P R I NT " . M U S I C TEAC H E R

1 0 0 R E M . . . A D D A N EW N OTE . . .
1 1 0 C LS
1 2 0 T =T+ 1
1 3 0 S (T) =R N D (8)
1 5 0 R E M . . . P LAY S O N G

-- 159

Lesson 19: Music Teacher (continued)

1 6 0 F O R L= 1 TO T
1 7 0 N =S (L) : G O S U B 6 0 0
1 8 0 N EXT L
1 9 0 C LS

2 00 R E M . . . I N PUT N OT E . . .
2 0 5 F O R L = 1 TO T
2 1 0 N $ = 1 N K EY $: 1 F N $ =" " G OTO 2 1 0
2 2 0 N =A S C (N $ } -4 8
2 3 0 G O S U B 6 0 0
2 4 0 I F N < > S (L) G OTO 3 0
2 5 0 N E XT L
2 6 0 G OTO 1 0 0

6 00 R E M . . . P R I NT & P LAY
6 1 0 P R I NT N
6 2 0 I F N = 1 TH E N F = 8 9
6 3 0 I F N = 2 TH E N F = 1 0 8
6 4 0 I F N = 3 TH E N F = 1 2 5
6 5 0 I F N = 4 T H E N F = 1 3 3
6 6 0 I F N = 5 TH E N F = 1 4 7
6 7 0 I F N = 6 T H E N F = 1 5 9
6 8 0 I F N = 7 T H E N F = 1 7 0
6 9 0 I F N = 8 TH E N F = 1 7 6
7 00 S O U N D F, 2
7 1 0 R ETU R N

Experiment 6 : Add a Delay
There are two places where a slight time delay in the program makes
it easier to use. To create a delay, make a one-line program loop, like
this:

F O R X = 1 TO 3 0 0 : N EXT X

When you type this instruction and press the I ENTER I key, the
computer counts to 3 0 0 before returning the cursor and the O K to
the screen. These two instructions add a similar pause before the
computer plays the song and erases the notes from the screen.

Add these instructions, play the game, and see if you prefer these
slight delays. You can use a similar instruction to add a pause to any
program. For longer or shorter times, change the number 3 0 0 .

1 5 5 F O R D LY = 1 TO 3 0 0 :N EXT D LY

1 8 5 F O R D LY= 1 TO 3 0 0 : N EXT D LY

The variable D LY was used instead of a single letter variable such as X
to make delay lines like these easy to see in a program listing and to
avoid conflict with other variables used in the program.

160 --

Lesson 19: Music Teacher (continued)

Experiment 7: OOPS!
This set of instructions adds two new features: sound effects and
automatic repeats for up to three mistakes. When you play a wrong
note, the computer will tell you about it with sound effects. If you've
made less than three errors, the program plays the tune again and
gives you another chance to guess it correctly.

First change Line 240 so that the computer goes to this section if the
note you input does not match the next note in the song. Then add the
section at Line 300 to create the sound.

The variable M is used to keep track of the number of mistakes. Start
with M = O . For each error, M increases by 1 . If you get the song right,
M is set equal to zero in Line 255 and the computer adds a new note.

Add these instructions to change the program as shown in Figure 4.
The improved graphics and the YO U WI N section are added in the next
experiments.

2 4 0 I F N < > S (L) G OTO 3 0 0

3 0 0 R E M O O PS ! . . .

3 1 0 F O R L = F -8 TO 1 STE P -8

3 2 0 S O U N D L . 1

3 3 0 N EXT L

3 4 0 M =M + 1

3 5 0 I F M < 3 G OTO 1 5 0 E LS E 3 0

3 0 T= O : M =O

2 5 5 M =O

Experiment 8: Music Tutor
It is much easier to guess the notes if you can see them printed in
standard music notation. While this addition to the program only
prints the numbers, not pictures of the notes, on the music staff, the
positions may help you guess the tune.

A new subroutine will be added to print a musical staff on the screen.
The scale is in the key of C and looks like this:

-- 161

Lesson 19: Music Teacher (continued)

C 8 d o
B ------------- 7 --- ti -- --- ------
A 6 l a
G --------- 5 --- so---------------

F 4 fa
E ----- 3 - -- m i -------------------
0 2 r e
C - 1 - do

First use G O S U B instructions to call the subroutine from two places
in the program. Lines 1 5 1 and 204 each use the subroutine to print an
empty staff on the screen and clear all the notes. This is done before
the computer plays the song and again before the notes are copied.

Line 830 prints a dotted line and then a full line of blank spaces. When
this line is printed in a program loop, it erases all the notes on the
screen, leaving the five lines and five spaces. Copy this line exactly.
There are 32 dashes followed by 31 spaces inside the quotation marks.
Notice on your screen that the dashes exactly fill the screen and that
the quotation marks are lined up vertically.

Now enter the two instructions that call the subroutine, and the
subroutine:

1 5 1 G O S U B 8 00

2 0 4 G O S U B 8 0 0

8 0 0 R E M . . E RAS E N OTES

8 1 0 P R I N T @64

8 2 0 FOR L = 1 TO 5

8 3 0 P R I NT "---------------------

8 4 0 N E XT L

8 5 0 P R I NT

8 6 0 R ETU R N

These next two instructions that look like comic book swear words are
used to print a number on the screen for each note that is played. The

162L--

\

Lesson 19: Music Teacher (continued)

math is used to position the number up and down to match the music
scale, and move it left and right to match its place in the song.

Lines 1 10 and 190 are removed because it is no longer necessary to
clear the screen.

6 1 0 I F N < > 1 T H E N P R I NT @448-N * 3 2
+ L *2 . C H R $ (N +4 8) ;

6 1 5 I F N = 1 TH E N P R I NT @44 7 -N * 3 2 +
L * 2 . "-" ; C H R $ (N +48) ; " -" ;

1 1 0

1 9 0

How It Works
L I N E S 6 1 0 and 6 1 5 position a number on the screen. If the number
is 1 , the note is printed with a dash on both sides, like this:

- 1 -

The variable N is a number from 1 to 8 that matches a note in the
musical scale. Line 610 calculates the position in terms of location
448, near the lower-left corner of the screen. It moves up (negative
direction) one row times the value of N . If N = 3 for example, it moves
up three rows on the screen. Then it moves right a distance 2 * L , or
two positions on the screen for each position in the song.

When the final position is calculated, the computer prints the number,
using its ASCII value. This extra step is done instead of just using
P R I NT N because it does not eliminate the space before and after
numbers that are printed on the screen.

L I N E 6 1 5 is used if N = 1 . It calculates from location 447, one positiOn
to the left of Line 610, and prints a dash before and after the number.

Experiment 9: You Win!
This final addition adds "positive reinforcement" for playing the game
by playing a special tune if you get all 15 notes right.

In order to change the sound, it is necessary to change Line 700 where
the sound is created. This instruction now says S 0 U N D F. 2 . Instead
of using a duration of 2, this instruction makes the duration the
variable D :

7 0 0 S O U N D F . D

163

Lesson 19: Music Teacher (continued)

Set D equal to 3 at the beginning with this change:

3 0 T = O : M =O : D =3

The next instruction tests to see if all 15 notes have been guessed.
The Figure 4 flowchart on page 171 shows how this line changes the
program:

2 6 0 I F T= 1 5 G OTO 9 0 0 E LS E 1 00

This section sets D = 1 and plays the tune three times, as fast as
possible. The program pauses with a request to try again.

9 00 R E M . . . YO U WI N !

9 1 0 F O R A = 1 T0 3

9 2 0 F O R 8 = 1 TO 1 5

9 3 0 N =S (B) : D = 1

9 4 0 G O S U B 6 2 0

9 5 0 N EXT B : N EXT A

9 6 0 P R I NT @4 5 2 , "TRY AGA I N (Y, N) ?

9 7 0 X $ =1 N K EY $: 1 F X $ =" " G OTO 9 7 0

9 8 0 I F X $ ="Y" G OTO 3 0 E LS E C LS

Experiment 10: Music Teacher
You can build this program by following the experiments in this
lesson or by loading the Lesson 19 tape with [g[b][Q][AJ[Q] .

When you run the program you will see the five bars of a musical
scale. The computer will pick a note and briefly flash a number on the
screen. Try to see the number and repeat it by pressing one of the
keys.

Guess correctly and the computer will add another note to the tune
and play it again. Make a mistake and the tune repeats for another
try. Three mistakes on the same note and a new, one-note tune begins .

If you can get the complete sequence of 15 notes right, the computer
will play it back three times at triple speed.

164'---

Lesson 19: Music Teacher (continued)

How It Works
The Figure 4 flowchart shows what the computer does while
running Music Teacher's Tune. The complete listing follows these
descriptions.

L I N E S 1 0- 5 0 dimension an array S (1 5) to hold numbers for each note.
The total number of notes in the song and number of missed notes are
set equal to 0 . The note duration D is set to 3 .

L I N E S 1 00- 1 3 0 add a new note t o the program by increasing T and
setting the next location in the array equal to a random number
between 1 and 8 .

L I N E S 1 5 0- 1 85 play the song with a loop that cycles once for each
note . On each cycle, N is set equal to a number in the array. Then
the subroutine at Line 600 converts N to a frequency number and
plays the note. Short delays are used before starting the song and
before clearing the screen.

L I N E S 2 0 0- 2 6 0 input the note typed on the keyboard. The I N K EY $
function reads the key directly, without use o f the ENTER key. The
variable N is set equal to the value of the key typed. If this value
does not match the next note in the song, the program goes to 0 0 PS !

L I N E S 3 0 0- 3 5 0 create a falling tone if the guess was wrong. The STE P
function in the loop allows it to count backwards, decreasing L and
the frequency. If this mistake is not the third, the program goes to
Line 150 to play the song again. Miss three times in a row and the
program starts over - with a one-note song to copy.

L I N E S 6 0 0- 7 1 0 print and play the note. It is printed at the correct
location by either Line 610 or Line 615. The look-up table then
converts N into a number corresponding to the correct pitch. The
S O U N D command converts the number into a tone whose duration is
set by B .

L I N E S 8 0 0- 8 6 0 erase the notes on the scre1m by printing a set of lines
and spaces. This subroutine is called by the PLAY S O N G and I N PUT
N OTE sections of the program.

L I N E S 9 0 0- 9 8 0 are a prize for getting all 15 notes correct. The double
loop plays all 15 notes 3 times , as fast as possible. The speed increase
is caused by changing D , the duration of the note played in Line 700 .
the ending sequence is the standard module, described in Section 3,
page 215.

Here is the complete listing:

1 0 R E M M U S I C TEAC H E R
2 0 D I M S (1 5)
3 0 T= O : M =O : D = 3
-- 165

Lesson 19: Music Teacher (continued)

40 C LS
5 0 P R I NT " . . . M U S I C TEAC H E R

1 0 0 R E M . . . A D D A N EW N OTE
1 2 0 T=T+ 1
1 3 0 S (T) = R N D (8)

1 5 0 R E M P LAY S O N G
1 5 1 G O S U B 8 0 0
1 5 5 F O R D LY = 1 T O 3 0 0 : N E XT D LY
1 6 0 F O R L = 1 TO T
1 7 0 N =S (L) : G O S U B 6 00
1 8 0 N EXT L
1 8 5 F O R D LY= 1 TO 3 00 : N EXT D LY

2 0 0 R E M . . . I N PUT N OTE . . .
2 0 4 G O S U B 8 00
205 FO R L = 1 TO T
2 1 0 N $ = 1 N K EY S : I F N S =" " G OTO 2 1 0
2 2 0 N =AS C (N S) -4 8
2 3 0 G O S U B 6 0 0
2 4 0 I F N < > S (L) G OTO 3 00
2 5 0 N EXT L
2 5 5 M = O
2 6 0 I F T = 1 5 G OTO 9 00 E L S E 1 00

3 0 0 R E M O O PS !
3 1 0 F O R L = F - 8 TO 1 STE P -8
3 2 0 S O U N D L. 1
3 3 0 N EXT L
3 4 0 M = M + 1
3 5 0 I F M < 3 G OTO 1 5 0 E LS E 3 0

6 0 0 R E M . . . P R I NT & P LAY . . .
6 1 0 I F N < > 1 TH E N P R I NT @448-N *3 2
+L*2 . C H R $ (N +4 8) ;
6 1 5 I F N = 1 TH E N P R I N T @44 7 -N * 3 2 +
L *2 . " -" ; C H R $ (N + 4 8) ; " -" ;
6 2 0 I F N = 1 TH E N F = 8 9
6 3 0 I F N = 2 TH E N F = 1 0 8
6 4 0 I F N = 3 TH E N F = 1 2 5
6 5 0 I F N =4 TH E N F = 1 3 3
6 6 0 I F N = 5 T H E N F = 1 4 7
6 7 0 I F N = 6 TH E N F = 1 5 9
6 8 0 I F N = 7 T H E N F = 1 7 0
6 9 0 I F N = 8 T H E N F = 1 7 6
7 00 S O U N D F . D
7 1 0 R ETU R N

1661--

Lesson 19: Music Teacher (continued)

8 0 0 R E M . . . E RAS E N OTES . . .
8 1 0 P R I NT @ 6 4
8 2 0 F O R L = 1 T O 5
8 3 0 P R I NT "---------------------

840 N EXT L
8 5 0 P R I NT
8 6 0 R ETU R N

9 0 0 R E M . . . YO U WI N !
9 1 0 F O R A = 1 TO 3
9 2 0 FO R B = 1 TO 1 5
9 3 0 N =S (B) : D = 1
9 4 0 G O S U B 6 2 0
9 5 0 N EXT B : N E XT A
9 6 0 P R I NT @4 5 2, "TRY AGAIN (Y, N) ?

9 7 0 X $ =I N K EY $: 1 F X $ =" " G OTO 9 7 0
9 8 0 I F X $ ="Y" G OTO 3 0 E LS E C LS

--- 167

Lesson 19: Music Teacher (continued)

MUSIC
TEACHER

FIG. 1

RUN

200-220 t
KEYBOARD - INPUT I NOTE

600-7 1 0
1
2

-- - - ---------- 3 PRINT &

- --uj)
P LAY

168

Lesson 19: Music Teacher (continued)

MUSIC
TEACHER

FIG. 2

RUN

200-240 • 600-7 1 0 _\ !---- -- 1

INPUT PRINT & 2
KEYBOARD

NOTE PLAY
- - - - - - - · 3

�,
'

'
'

'
'

'
'

'
'

,Q]
)

169

Lesson 19: Music Teacher (continued)

1 0-50

1 00- 1 30

1 50- 1 90

200-240

KEYBOARD

START

MUSIC
TEACHER

FIG. 3

ADD A
NEW NOTE

P LAY
SONG ' 600-7 1 0 '

' '
'

' P RINT &
; PLAY ;

;
; ;

INPUT ; ;

NOTE

30-50

YES START
OVER

l
2

- - - - - -
8

�, 3 ' ' ' ' '
' ''
,rD}

170L---

KEYBOARD

Lesson 19: Music Teacher (continued)

1 0-50

100- 1 30

1 50- 1 85

START

ADD A
NEW NOTE

MUSIC
TEACHER

FIG. 4

800-860

'--�-�-.�_6 __ '�,

- - -

- -
,
�,i I ��i�

' I
' I

' I
"
/\

I '
I '

,' \ 600-7 10

If - - - - - - - - - -

200-260------L.--� I ' �-----'�- - - - - - :1 p��i;.;, &
INPUT
NOTE

�--r---J

-

300-350

>-----1

�

00P

-

S !

____,

- - -- - --Q]) j
N

START
OVER

900-980

y

,___

Y

_

o

_

u

_

w

_

I N

_

! _ - - - - - - - --Q])

6
4 4

- 1 -

171

Lesson 20: Car C alculator

Lesson 20: Car Calculator
Branching and Special Calculators

This lesson's software creates a special calculator for solving problems
about distance, rate, time, and gas mileage. While you probably
wouldn't have any trouble finding these answers with a simple
calculator, this lesson will show how you can write a program to
create any special calculator you wish. If you know the formulas for
solving problems, you can use a program like this one to input the
data and create a printout of the results.

Experiment 1: Distance Calculator
This short program calculates distance traveled when the time and rate
of speed are known. Type ��� to erase any program in memory and
enter these instructions:

3 0 0 R E M . . . D I STAN C E

3 0 5 P R I NT

3 1 0 I N P UT " TI M E I N H O U R S";T

3 2 0 I N P UT " RATE IN M I LE S PER H O
U R" ; R

3 3 0 D =R *T

3 3 5 P R I NT

3 4 0 P R I NT " AT'; R ; "M I L E S P E R H O U
R"

3 5 0 P R I NT " FO R";T; " H O U RS"

3 6 0 P R I NT " YO U WI L L TRAVE L"

3 7 0 P R I NT D ; " M I LE S "

Run the program and enter numbers for T and R . The formula in
Line 330 calculates the answer. A complete printout is created with
Lines 335-370.

If you enter [j]CJ[§] for the time and [§][§] for the rate, the screen
will show:

TI M E I N H O U R S ? 1 . 5
RATE I N M I LE S PE R H O U R ? 5 5

--- 173

Lesson 20: Car Calculator (continued)

AT 5 5 M I LE S P E R H O U R
F O R 1 . 5 H O U R S
YOU WI L L TRAV E L
8 2 . 5 M I L E S

O K

Experiment 2: Time Calculator
Add this section and calculate the time required when the distance
and rate are known. These instructions work exactly the same way as
before to input values for the variables, calculate the answer with a
formula, and print the results.

400 R E M . . . T I M E

4 0 5 P R I NT

4 1 0 I N PUT " D I STA N C E I N M I LES" ; D

4 2 0 I N PUT " RATE I N M I LE S P E R H O
U R"; R

4 3 0 T = D / R

4 3 5 P R I NT

440 P R I NT " TRAVE L I N G" ; D ; "M I LES"

450 P R I NT " AT'; R ; " M I L E S P E R H O U
R"

4 6 0 P R I NT " WI L L TAK E YOU"

4 7 0 P R I NT T; " H O U R S"

Instead of running the program, type �[Q]IIJ[Q]O�[Q][Q]. The computer
will run the second section, starting at Line 400. Input 313 miles for
the distance and 55 MPH for the rate. The printout will show:

D I STA N C E I N M I LE S ? 3 1 3
1 RATE I N M I LE S P E R H O U R ? 5 5

TRAVE L I N G 3 1 3 M I LE S
AT 5 5 M I LE S P E R H O U R
WI LL TAK E YO U
5 . 6 9 0 9 0 9 0 9 H O U R S

O K

In Experiment 4 you will see how to round off this answer automatically
to 5.7 hours.

174"---

Lesson 20: Car Calculator (continued)

Experiment 3: Speed Calculator
There is nothing new or different here. With new variables to input and
a new formula, this is the same program as before. Add these lines to
calculate average speed:

5 0 0 R E M . . . S PE E D

5 0 5 P R I NT

5 1 0 I N PUT " D I STAN C E I N M I LE S " ; D

5 2 0 I N P UT " T I M E I N H O U R S";T

5 3 0 R = D /T

5 3 5 P R I NT

5 4 0 P R I NT " TRAVE L I N G"; D ; "M I L E S "

5 5 0 P R I NT " I N" ; T; " H O U RS "

5 6 0 P R I NT " YO U W I L L AVE RAGE"

5 7 0 P R I NT R ; " M I LES PER H O U R"

To test this segment of the program, enter IGJ[Q][!][Q]O[§][Q][Q]. Find out
what your average speed would have to be to travel from here to the
sun in one day with these inputs:

D I STAN C E I N M I L E S ? 9 3 000000
T I M E IN H O U R S ? 24

TRAVE L I N G 9 3 000000 M I LE S
I N 2 4 H O U R S
YO U WI L L AVE RA G E
3 8 7 5 00 0 M I LE S P E R H O U R

O K

Experiment 4 : Rounding Off Answers
To avoid answers such as 5 . 6 9 0 9 0 9 0 9 H O U R S , round off the results
of any division problems with this programming module. These two
lines will round off the time T and rate R to the nearest tenth - or
to one decimal place:

4 3 2 T= I NT(T * 1 0+ . 5) / 1 0

5 3 2 R = I NT(R * 1 0+. 5) / 1 0

--
--- 175

176

Lesson 20: Car Calculator (continued)

After adding these lines, test the rounding off. Enter �[Q][!][Q]O[!)[Q][Q]
and then enter �[1]� for the miles, rnJrnJ for the rate. This time,
instead of printing 5.69898989, the computer will round off and print
5. 7 hours as the answer.

Experiment 5: Variable Names
In most of these programs single-letter variables have been used.
It is convenient to use D for distance, R for rate, T for time, and
similar letters to name variables in a program. You can also use
complete names, starting with a letter, such as: D I STA N C E , RATE ,
TI M E , or even U N C LE D I C K . While the names you use may be of any
length, the computer reads only the first two letters of a variable
name.

In this final section of the program, the variables are named: M I L E S ,
G A L, and M PG . Notice that well-chosen variable names can make a
program easier to read.

To see that long variable names really work, do this:

M YSTE RYN U M B E R = 5
O K
P R I NT MY

5
O K

Now add this ecology-minded section to your program and compute gas
mileage easily:

6 0 0 R E M M PG . . .

6 0 5 P R I NT

6 1 0 I N PUT " D I STAN C E I N M I LE S" ; M
I LE S

6 2 0 I N PUT " F U E L I N GAL LO N S" ;GAL

6 3 0 M PG = M I LE S /GAL

6 40 M PG =I NT(M PG * 1 00+ . 5) / 1 00

6 4 5 P R I NT

6 5 0 P R I NT " TRAVE LI NG"; M I L E S; " M I
L E S "

6 6 0 P R I NT " O N " ; GA L; "GALLO N S O F
F U E L"

Lesson 20: Car Calculator (continued)

6 7 0 P R I NT " YO U WI L L AVE RAGE"

680 P R I NT M PG ; " M I LES PER GALLON"

Test this section with �[Q][!]IQIO[§][Q][Q] and see that it works the same
way as the others.

Experiment 6: Menu
There are two things you need to do to combine these sections and create
a useful program. This menu section will start the computer in the right
place, and the next experiment will provide an ending for the program.

1 00 R E M . . . M E N U

1 1 0 C LS : PR I NT : P R I NT

1 2 0 P R I NT " . . . CAR CALC U LATO
R . . . "

1 3 0 P R I NT: P R I NT

1 40 P R I NT "
E D"

1 5 0 P R I NT "

1 6 0 P R I NT "

1 7 0 P R I NT "

1 . D I STAN C E TRAVE L

2 . TI M E R E Q U I R E D"

3 . AVE RAG E S PE E D"

4 . GAS M I LEAG E"

1 8 0 P R I NT : P R I NT

1 9 0 P R I NT " S E LE C T (1 - 4)"

2 0 0 K $ = 1 N K EY $: 1 F K $ ="' " G OTO 2 0 0

2 1 0 S E L=ASC (K $) -4 8

2 2 0 C LS

2 3 0 O N S E L G OTO 3 0 0, 4 0 0. 5 00. 6 00

2 4 0 G OTO 1 00

--� 177

Lesson 20: Car Calculator (continued)

Experiment 7: More?
The menu will direct the computer to the appropriate section. With the
following instructions, the computer will ask if you want another calcu­
lation. Depending on your response, the program will go back to the
menu, or stop.

3 8 0 G OTO 7 0 0

4 8 0 G OTO 7 0 0

5 8 0 G OTO 7 0 0

7 0 0 R E M . . . M O R E?

7 0 5 P R I NT

7 1 0 P R I NT "
N (Y. N) ?"

A N OTH E R C A LC U LATI O

7 2 0 K $ =1 N K EY $: 1 F K $ =" " G OTO 7 2 0

7 3 0 I F K $ ="Y" G OTO 1 0 0 E LS E C LS

Now your program is complete. Run it and see that the menu directs the
computer to the right section for inputting data and printing results.

Experiment 8: Car Calculator
This program is recorded on the Lesson 20 cassette. You can build the
program from scratch, following the experiments in this lesson, or you
can load the cassette and run the final program.

The standard program menu with four choices is displayed. Press
one of these keys and the computer requests the first input. Type a
number and press IENTERI . Answer the second question by typing
a number and pressing IENTERI again. The final printout will repeat
the data and state the result.

While these calculations are trivial, this program shows several
important techniques for building a special calculator by using a menu
and a series of formulas. With only a few changes in the wording
and in the formulas, you could create your own software for real estate
calculations, loans and interest tables, English and metric conversion,
cost or material estimates, and many other calculations .

How It Works
The flowchart on page 1 8 1 shows how this program is organized,
with a menu, four sections for inputting data and printing the results,

178'---

Lesson 20: Car Calculator (continued)

and a final section that returns to the menu if another calculation is
requested.

Here is the complete listing:

1 0 R E M . . . CA R CALC U LATO R
1 00 R E M . . . M E N U . . .
1 1 0 C LS : PR I NT: PR I NT
1 20 P R I NT " . . . CAR C A L C U LATO
R . . . "
1 3 0 P R I NT: P R I NT
1 40 P R I NT " 1 . D I STAN C E TRAVE L
E D"
1 5 0 P R I NT " 2 . T I M E R E Q U I R E D"
1 6 0 P R I NT " 3 . AVE RA G E S PE E D"
1 7 0 P R I NT " 4 . GAS M I L EAG E"
1 80 P R I NT: P R I NT
1 9 0 P R I NT " S E LE C T (1 - 4) "
2 00 K $ =1 N K EY $: 1 F K $ =" " G OTO 2 00
2 1 0 S E L=ASC (K $) -4 8
2 2 0 C LS
2 3 0 O N S E L G OTO 3 00. 4 00, 5 0 0, 6 0 0
2 40 G OTO 1 0 0

3 00 R E M . . . D I STAN C E . . .
3 0 5 P R I NT
3 1 0 I N PUT " T I M E I N H O U R S";T
3 2 0 I N PUT " RAT E IN M I LE S P E R H O
U R"; R
3 3 0 D = R *T
3 3 5 P R I NT
3 40 P R I NT " AT'; R "M I LE S P E R H O U
R"
3 5 0 P R I NT " FO R";T; " H O U R S "
3 6 0 P R I NT " Y O U W I L L TRAVE L"
3 7 0 P R I NT D; " M I L E S "
3 8 0 G OTO 7 00

4 0 0 R E M . . . TI M E . . .
4 0 5 P R I NT
4 1 0 I N P UT " D I STAN C E I N M I LE S" ; D
4 2 0 I N P UT " RATE I N M I LE S P E R H O
U R"; R
4 3 0 T = D / R
4 3 2 T = I N T(T* 1 0 +. 5) / 1 0
4 3 5 P R I NT
4 4 0 P R I NT " TRAVE LI N G " ; D ; " M I LES"
45 0 P R I NT " AT' ; R ; " M I LE S PE R H O U
R"
4 6 0 P R I NT " WI L L TA K E YO U"
4 70 P R I NT T; " H O U R S "
4 8 0 G OTO 7 0 0 -- 179

Lesson 20: Car Calculator (continued)

5 0 0 R E M . . . S PE E D . . .
5 0 5 P R I NT
5 1 0 I N PUT " D I STAN C E I N M I LES" ; D
5 2 0 I N PUT " TI M E I N H O U R S";T
5 3 0 R = D/T
5 3 2 R =I NT(R * 1 0) +. 5) / 1 0
5 3 5 P R I NT
5 4 0 P R I NT " TRAVE L I N G"; D ; "M I L E S"
5 5 0 P R I NT " I N" ;T; " H O U RS"
560 PR INT " YO U WI L L AVE RAG E"
5 7 0 P R I NT R ; "M I LE S P E R H O U R"
5 8 0 G OTO 7 0 0

6 00 R E M . . . M PG . . .
6 0 5 P R I NT
6 1 0 I N PUT " D I STAN C E I N M I LES" ; M
I LE S
620 I N PUT " F U E L IN GALLO NS" ;GAL
630 M PG = M I L E S /GAL
640 M PG = I NT(M PG * 1 00+. 5) / 1 00
6 4 5 P R I NT
6 5 0 P R I NT " TRAVE L I N G" ; M I L E S : " M I
LE S"
6 6 0 P R I NT " O N"; GAL;"GA L LO N S O F
F U E L"
6 8 0 P R I NT M PG ; " M I LES P E R GALLON"

7 00 REM . . . M O R E ? . . .
7 0 5 P R I NT
7 1 0 P R I NT " A N OTH E R C A LC U LATI O
N (Y, N) ?"
7 2 0 K $ = I N K E Y $: 1 F K $ =" " G OTO 7 2 0
7 3 0 I F K $ ="Y' ' G OTO 1 0 0 E LS E C LS

180L---

I KEYBOARD � MENU

ERROR

Lesson 20: Car Calculator (continued)

CAR
CALCULATOR

FIG . 1

. . . CAR CALCULATOR . . .

I . DISTANCE

2. TIME
- J. SPEED

4. MPG

SELECT (1-4)

300-380

TIME
& RATE

400-480

DISTANCE
& RATE

DISTANCE
& TIME

600-680

MILES &
GALLONS

700-730 TIME? J.S
RATE? S S

--

PRINTOUT
--
--
192.S MILES

ANOTHER

CALCULATION (Y-N)

y

N

END

181

Lesson 2 1 : Graphics

Lesson 21: Graphics

Video Art and Graphics Characters

There are many ways you can use the graphics capabilities of your
Color Computer. For example, you can create a message center, an
electronic billboard, charts and graphs, video art, games, and even
cartoons on your TV.

This lesson contains special software that helps you include color
drawings, pictures, and art in your computer programs. You can use
this programming tool to make full color signs with large and small
letters, charts, or even pictures .

Experiment 1 : Graphics
Begin by loading the Lesson 21 cassette program. When you run the
program you will see this menu:

. . . G RA P H I C S . . .

1 . G RA P H I C S C HA RACTE R S
2 . B I LLB O A R D S & S I G N S
3 . ART & A N I MATI O N

S E LE C T (1 - 3)

Graphics Characters, the first selection, is a programmer's tool. This
program makes it easier for you to add pictures, graphics, and cartoons
to your programs. You can load and run this program each time you
wish to convert a drawing on graph paper to an image on the screen.
This software makes programming pictures much easier because it
shows you exactly what the screen will display for each square on the
graph paper.

Billboards & Signs, the second selection, is a simple example of a
screen with large and small letters. By following this example, you
can easily add full screen messages to your programs.

Art & Animation, the last selection, displays a more detailed drawing
of a space person with a computer voice. With careful work, you could
use this technique to create a short cartoon or "film strip." Before you
imagine anything like the effects in "Star Wars' ' , "Snow White", or
the latest computer graphics TV commercial, remember that your
Color Computer can only draw colored dots - much like needlepoint
or paint-by-numbers sets.

To see all three selections on the menu, press the number and read the
description below. If you are looking at Section 1 and wish to see

--_.. 183

Lesson 21: Graphics (continued)

another selection, press !BR EAKI to stop the program, then type
[B][W� and press I ENTER I to start with a new menu. If you are looking
at Sections 2 or 3 and wish to make another selection, just press any
key and the program will return to the menu automatically.

Experiment 2: Graphics Characters
Select l1J to see Graphics Characters, the program that helps you add
pictures to programs. The screen will show 16 graphics shapes, with
their numbers. This collection of shapes is printed in orange, with a
black background. Now press number � and the screen will show
these same shapes as they appear in pink, with a black background.
Notice that shapes 157 and 158 lank like eyes.

Press each number from 2 to 8 on the keyboard and see how these 16
shapes can be printed in each of the eight colors. For each shape, in
each color, there is a specific number you will use. With this program
running in your computer, it is easy to copy a drawing on graph paper
to an image on the screen. With these 128 graphics symbols (16
shapes in 8 colors) you can print a wide variety of pictures.

Experiment 3: Character Numbers
The numbers next to each graphics character are used to print the
character on the screen. The statement at the bottom of the screen is
an automatic converter to show you what numbers are associated with
each of the keys on the keyboard. Press the letter IA] and see that its
character number is 6 5 . Letter [I] is the number 9 0, the up arrow
is 9 4, and the question mark is number 6 3. This feature is useful
whenever you wish to convert a letter, number, or punctuation mark to
its character number. These numbers are called ASCII numbers and
are used by most computers to represent keyboard and graphics
characters.

Experiment 4: Billboards & Signs
For a simple example of a picture printed with these graphics shapes,
press IBR EAKI to stop the program. Then run the program again.
When the menu appears. select number � .

Your screen will show a large H I ! with . . . G RA P H I C S . . . in smaller
letters. This is a simple example to show how you can use large and
small letters on the screen at the same time. You may have seen the
in-store demonstration of the Color Computer that uses similar
techniques to create a series of messages on the TV.

Figure 1 on page 190 shows how these displays are created. The TV
screen is divided into 32 columns (0 to 3 1) and 16 rows (0 to 15) . The
characters you saw in the first experiment can be placed in any of

184&.....---

Lesson 21: Graphics (continued)

these squares. For this example, a section of the screen from column
1 1 to column 20 and from row 4 to row 8 is used to print the word H I ! .

E ach block inside this section is assigned a number. Compare the
picture on your screen with Figure 1 and see which numbers are used
for each color. Each number represents a solid square of color.
S quares with number 143 are used for the background. Squares
numbered 239 form the H , number 207 squares make the I , and
number 159 squares are used for the exclamation point.

The first step in creating a picture like this is to sketch the design on
graph paper, as shown in Figure 1. Then the colors are selected and
the numbers for each block are filled in. It will probably help to use a
work sheet to show what numbers are used in each block, like this:

4

5

6

7

8

Work Sheet for "HI ! "

1 1 12 13 14 15 16 17 18 19 20

+ -- -

239 143 143 239 143 143 207 143 143 159

239 143 143 239 143 143 207 143 143 159

239 239 239 239 143 143 207 143 143 159

239 143 143 239 143 143 207 143 143 143

239 143 143 239 143 143 207 143 143 159

If you look closely at the work sheet you can see the letters H and I
the exclamation point outlined in the numbers 239, 207, and 159.

and

It is much easier to fill in this work sheet if you use the Graphics
Characters design aid, selection [1] on the menu, for selecting graphics
characters. Return to the menu by pressing any key, then select
option [1] to return to Graphics Characters. You will see the 16
shapes in orange. This drawing is made up of solid color blocks, as
shown in the lower-right hand corner. Press [ZJ now and see that
shape number 239 is a solid square in light blue. Press � and see
that number 175 is a dark green square. Press � and see that 159 is
solid pink. (The colors will vary, depending on your TV and your
perception.)

The final step, transferring the numbers on your work sheet to the
program, is done in a series of data statements. To reproduce your
own pattern, copy these instructions and substitute your numbers for
the ones shown. The instructions for writing H I I look like this in the
program: (The data instructions shown below are not wrapped around

-- 185

186

Lesson 21: Graphics (continued)

or continued on the next line, as they actually appear when you list
the program on your screen.)

2 000 R E M . . H I ! . . .
2 0 1 0 C LS
2 0 2 0 F O R Y =4 TO 8
2 0 3 0 F O R X = 1 1 TO 2 0
2 040 R EA D C
2 0 5 0 P R I NT @3 2 *Y+X. C H R $ (C) ;
2 0 6 0 N EXT X : N EXT Y

2 1 04 DATA 2 3 9 . 1 4 3 . 1 4 3 . 2 3 9. 1 43 . 1 4 3 . 2 0 7 . 1 43 . 1 4 3 . 1 5 9
2 1 0 5 DATA 2 3 9 . 1 4 3 . 1 4 3 . 2 3 9 . 1 43 . 1 4 3 . 2 0 7 1 43 . 1 43 . 1 5 9
2 1 06 DATA 2 3 9. 2 3 9. 2 3 9 . 2 3 9 . 1 4 3 . 1 4 3 . 2 0 7 . 1 4 3 . 1 43 . 1 5 9
2 1 0 7 DATA 2 3 9. 1 43 . 1 4 3 . 2 3 9 . 1 43 . 1 4 3 . 2 0 7 . 1 4 3 . 1 4 3 . 1 4 3
2 1 08 DATA 2 3 9. 1 43 . 1 4 3 . 2 3 9. 1 4 3 . 1 4 3 . 2 0 7 . 1 4 3 . 1 4 3 . 1 5 9

The numbers 4 and 8 in Line 2020 tell the computer which columns
to use and the numbers 1 1 and 2 0 in Line 2030 define the rows. Line
2040 sets the variable C equal to the numbers in the data statements.
Then these numbers are plotted on the screen to cover a square area
and spell H I 1 • The data statements are printed in five separate lines
so that it is easier to edit the program to make changes or correct any
errors in the final picture.

The added message in small letters is a standard print statement that
begins in row 1 1 , column 8. This is printed with the following
instruction:

2 0 7 0 P R I NT @3 2 * 1 1 +8 . " G RA P H I C S

The instructions on Lines 2080 and 2090 hold the computer at this point
until you press a key. Then the program runs from the beginning
again, printing the menu as before.

2 0 8 0 R $ = 1 N K EY $: 1 F R $ =" " G OTO 2 0 8 0
2 0 9 0 R U N

Experiment 5 : Art & Animation
Figure 2 on page 191 shows how graphics shapes in addition to
solid blocks of color can be used in creating a more detailed drawing.
The principle is exactly the same as in printing H I ! , except that
several kinds of graphics shapes in addition to solid blocks of color
are used.

If you are watching H I ! , press any key to return to the main menu.
If you are watching Graphics Characters, press IBR EAKI to stop the
program and type [BJ[g:J� .

Lesson 21: Graphics (continued)

From the menu, select Art & Animation to draw a Space Person. Adjust
the volume control on your TV to hear a lecture about computer
graphics. (Unfortunately, the lecture is in Martian.)

To see how this figure is constructed, return to the Graphics Characters
section of the program. Press any key to return to the menu, then
select number [j] . Now press number � and display the characters
from 144, to 159. Two of these characters, numbers 157 and 158, are
used for the eyes of the space person in the drawing. On the Space
Person work sheet below, locate the numbers 158 and 157 in row number
4 (the second row on the work sheet) . These characters correspond to
the position of the eyes in the drawing.

Continue comparing the drawing in Figure 2 with the characters on
the screen. The work sheet will help yo1:1 identify each block by
number. The display on the screen will show you what each number
looks like. Remember to press any number from 1 to 8 to see the
complete selection of graphics characters.

Work Sheet for Space Person

12 13 14 15 16 17 18

- -
3 208 2 1 1 2 15 2 1 1 219 2 1 1 208

4 225 223 158 223 157 223 226

5 208 220 223 223 223 220 208

6 179 179 179 191 179 179 179

7 191 176 191 191 191 176 191

8 191 176 239 239 239 176 191

9 142 128 255 252 255 128 141

10 240 240 255 240 255 240 240

1 1 240 240 255 240 255 240 240

12 128 131 139 128 135 131 128

The following portion of the program prints the graphics characters
whose numbers are shown in the Space Person work sheet.

3 0 0 0 R E M . . S PAC E P E R S O N
3 0 1 0 C LS

187

188

Lesson 21: Graphics (continued)

3 0 2 0 F O R Y=3 TO 1 2
3 0 3 0 F O R X= 1 2 TO 1 8
3 0 40 R EAD C
3 0 5 0 P R I NT @3 2 *Y+X, C H R $ (C) ;
3 0 6 0 N E XT X : N E XT Y

3 0 7 0 DATA 2 0 8, 2 1 1 , 2 1 5 . 2 1 1 , 2 1 9 , 2 1 1 , 2 0 8
3 0 8 0 DATA 2 2 5, 2 2 3 , 1 5 8 , 2 2 3 , 1 5 7 , 2 2 3 , 2 2 6
3 0 9 0 DATA 2 0 8. 2 2 0, 2 2 3 , 2 2 3 , 2 2 3 , 2 2 0, 2 0 8
3 1 0 0 DATA 1 7 9 , 1 7 9 , 1 7 9 , 1 9 1 , 1 7 9 , 1 7 9 , 1 7 9
3 1 1 0 DATA 1 9 1 , 1 7 6 , 1 9 1 , 1 9 1 , 1 9 1 , 1 7 6 , 1 9 1
3 1 2 0 DATA 1 9 1 , 1 7 6 , 2 3 9 , 2 3 9, 2 3 9 , 1 7 6 , 1 9 1
3 1 3 0 DATA 1 4 2 , 1 2 8 , 2 5 5, 2 5 2 , 2 5 5, 1 2 8, 1 4 1
3 1 4 0 DATA 2 40, 2 4 0, 2 5 5 , 2 4 0, 2 5 5, 2 40, 2 4 0
3 1 5 0 DATA 2 40, 2 4 0, 2 5 5 , 2 4 0, 2 5 5, 2 40 , 2 4 0
3 1 6 0 DATA 1 2 8, 1 3 1 , 1 3 9 , 1 2 8 , 1 3 5 , 1 3 1 , 1 2 8

Notice that the program listed above is very similar to the program used
for printing H 1 1 , The numbers used in Lines 3020 and 3030 determine
the overall size of the figure drawn on the screen. In this case, the
drawing goes from row 3 to row 12 (Line 3020) and from column 12 to
column 18 (Line 3030) , There are more numbers in the data statements
because Space Person is larger than HI ! , with more squares to fill in.
Also notice that there is more variation in the numbers because more
kinds of graphics shapes are being used.

After Space Person has been drawn, the computer goes to another
section of the program to create the "lecture." Line 3065 does the
routing:

3 0 6 5 G OTO 3 2 00

Experiment 6: Speak & Spiel
This section of the program is a continuing loop that opens and closes
Space Person's mouth and creates the speech-like sounds. The mouth
animation is done by alternating the equal sign (=) and the dash (-) .

The program waits a random length of time, then prints = , makes a
sound, prints - , and waits again. The sound is a random frequency
between S O U N D 2 3 1 and S O U N D 2 4 0 . The duration is also random and
ranges from 1 to 3. When any key is pressed, the program is R U N again.
This restores the data statements and displays the main menu.

Here is a listing of this section of the program. To duplicate Space
Person's speech in any program, just copy this idea:

3 2 00 R E M S P EAK
3 2 1 0 T = R N D (3 00)
3 2 2 0 F O R D LY= l TO T :N EXT D LY

3 2 3 0 P R I NT @ 5 * 3 2 + 1 5 . " =";
3 2 40 S O U N D R N D (1 0) + 2 3 0. R N D (3)
3 2 5 0 P R I NT @ 5 *3 2 + 1 5 . " -" ;
3 2 6 0 R $ =1 N K EY $: 1 F R $ =" " G OTO 3 2 0
0
3 2 7 0 R U N

Experiment 7 : On Your Own

Lesson 21: Graphics (continued)

Creating your own graphics designs is tedious, but not difficult. With
careful planning you can design longer programs with many pictures
or messages. Begin with a simple drawing that doesn't contain too
many squares. Copy the drawing on graph paper, using the shapes in
Graphics Characters as a guide.

As a start, try a drawing that is the same size as HI! You can then use the
program listed in Experiment 4 to draw the figure on the screen, and
change the numbers in the data statements to print the design you
have drawn.

Once you have a design that prints correctly, you can move it to any
location on the screen by changing the row and column numbers. Be
careful to keep the total width and height the same, or you will get
very strange results.

If you wish to print messages or characters from the keyboard, use
P R ! NT @, as in Lines 3230 and 3250. The background color for all
characters on the keyboard is green.

Time delays are necessary if you wish to pause between p ictures or

messages. You can set T equal to the delay you wish and use the
time delay module in Line 3220, or use an input from the keyboard
to continue the program, as in Line 2080 . You could also control the
program by using the joystick button to advance to the next picture,
similar to a slide projector.

Many kinds of lettering can be printed with graphics characters. The
examples in Figures 3 and 4 show some of the lettering styles used in
professional computer displays.

--� 189

..
.

�

Q

0

2

1
3

2
6

3
9

4
1

2

5
1

6

6

1
9

7
2

2

8
2

5

9
2

8
 4
 6

8
 0
 2 4

10
 3

2

11

3
5

12

3
8

 6

8

0
 2

4

13

4
1

14
 4

4

15

4
8

 6

8

0
 0

1

2

3

4

5

6

7

8

9
 1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0

4 5 6
 7 8

-
I

•

•

r
 2

39
 -.

......
\.

....
�

-

�
 �� �� � � � � �

� �

•

G
 v � R

�

/

14
3

'
/

20
7

'

,/
'

-

I
\

I/
�

� � K
 �

� �

� �
� �

� �
� �

� �
�

�
�

�
� ljj

A

p

H

I
C

s

F
IG

U
R

E
 1

2
ll2

2
 2

3
 2

4
l2

S
e

6
2

7
 2

S
 2

9
B

0
3

1

�

/

I/

'

/

I/

•

•

15
9 ""

"
y

- •

-
-

t"4

....
(I) fl} fl} 0 = �

..

..
..

0

� p:i 't:S

 =- 1-1
• (') fl} -.
.

(') 0 = ""

1-1
• = = (I) p.

.._

�

co

�

0

3
2

2

6
4

3
9

6

4
1

2
8

5
1

6
0

6

1
9

2

7
2

2
4

8
2

5
6

9
2

8
8

10
 3

2
0

11

3
5

2

1 2

3
8

4

13

4
1

6

14

4
4

8

15

4
8

0
 0

 1
1

12
 1

3
 1

4
15

16
 I

7
 1

8
 I 9

11
0

11
1[

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
12

0
12

1

3 - 4 - 5 - 6
 - 7 - 8

I
I

I
I

-
I

I
-

I
I

I
I

9
1

I
I

, _

-
_

,
I

I
I

1
IO

 I
I

I
-

I
I

I

1
I 1

 I
I I

 -
•

 -
I

I I

1
I 2

I

I
I

I
I

I

F
IG

U
R

E
 2

I
I

I
I

I
I

I
I

I
I

•
�

I

I
I

I
I

I
I

I
I

I
I

� en
 0

I
I

I
I

I
I

I
I

I
I

I
= �

I I

 I
 I

 I
I

I I
 I

 I
�

I

.. 0

I
I

I
I

I
I

I
I

I
I

I
� � tt:S

 =- ..
..

(')

en

- (')
 0 = �

..
.. =

I
= � �

-

Lesson 21 : Graphics (continued)

192L...--

Lesson 22: Player Piano

Lesson 22: Player Piano
Music Instruments

This program creates an instrument you can play like a piano. You
type in tunes and the computer plays them back. This hunt-and-peck
method works well on a computer because you can back up and
correct any wrong notes.

If you have tried to add music or even short tunes to your programs,
you know how difficult it is to convert numbers from a frequency table
into notes that sound the way you want them to. This special software
package turns your computer keyboard into a music keyboard, making
it much easier to program music or add songs to your software.

The response time is not as fast as an electric piano, organ, or
synthesizer, but you will be able to replay your music as many times
as you like by pressing a key. When you are satisfied with the results,
this program will print out the frequency table so that you can add the
music to any program.

Experiment 1: Player Piano
Begin by loading the program from the Lesson 22 cassette. When you run
the program you will see this message on the screen:

. . . P LAYE R PIA N O

Adjust the volume o n your T V and press any of the keys i n the row that i s
closest to you. These keys correspond to the white keys o n a piano,
with the letter C and middle C aligned, like this:

Computer keys
Piano keys

Z X C V B N M < > ?
A B C D E F G A B C

Pick out a tune and notice the printing on the screen. If you can't think
of a tune, play these letters: [g[IDIMJ[grn:JlMJ�[ID[Y][g . The numbers on
your screen are those used with the S O U N D command to make the
sounds you hear. The note C, for example, is played when your com­
puter sees this instruction:

S O U N D 1 7 6 . 2

Experiment 2: Playback
Now press [fl and get a playback and a copy of the music you just entered.
To play at full speed, without the notes on the screen, press [W .

193

Lesson 22: Player Piano (continued)

When in mode P , the computer adds a short time to each note because
it takes time to print the numbers on the screen. Music you copy and
use in a program will be played at the @ speed.

Experiment 3: Clear
To clear the notes from the system means to erase them forever and
make room for something new. Press the ICLEARI key and see your
composition vanish.

Experiment 4: +- Octave Shift�

The left and right arrows move the keyboard one octave. Press the left
arrow and try entering a short tune. Notice that the keyboard is shifted
one octave down. To shift back again, press the right arrow. Press it
again to play the highest octave.

The keyboard stays where you leave it. You can jump from one end of
the range to the other by pressing the arrow twice.

If you have a critical ear, you will notice that the highest notes in the
top octave are not quite on pitch. You can change the pitch, or make
up any scale you like, by modifying the frequency look-up tables in
the program.

Experiment 5: Electrical Eraser
The up-arrow key on the left has a very useful function in this program.
If you play a wrong note, just press this "back up" arrow and play the
note again. The information on the screen will not change, but the
wrong note will be erased from the memory. Test this yourself by
entering a song you like and using the eraser to back up and remove
mistakes.

Experiment 6: Programming Holds
The zero (0) key is used to hold the note one more beat. After pressing
any of the note keys, press [Q] once for each beat you wish to extend
the note. Try this example and see the effect of the zeros after each
note. Press I CLEAR I and [ZI before you begin. Press [QJ , not the letter
(0) , when you type these characters on the keyboard:

c ooc oc c o o
G OVVOC C OXC OOO

Your screen should look like the following:

194 --

P LAY E R P IANO

89 6
8 9 4
8 9 2
8 9 6

1 1 7 4
1 08 2
1 0 8 4

8 9 2
8 9 4
7 8 2
8 9 8

Lesson 22: Player Piano (continued)

Now play the tune with both � and [@11 . The timing will sound very
similar because the slight additional time required to print the note
on the screen in P mode is not significant with the longer notes.

Experiment 7: Programming Notes
The S O U N D command is used to play notes in the TV speaker. The first
column on the screen is the frequency number and the second column
is the duration number. To reproduce this song in a program, just add
these instructions:

S O U N D 8 9. 6
S O U N D 8 9. 4
S O U N D 8 9 . 2
S O U N D 8 9 . 6
S O U N D 1 1 7 . 4
S O U N D 1 08. 2
S O U N D 1 08. 4
S O U N D 8 9. 2
S O U N D 8 9 . 4
S O U N D 7 8. 2
S O U N D 8 9. 8

Use a line number with each instruction, and place this series
of 1 1 lines in your program at the spot where someone loses the game,
gets gunned down at the pass, goes bankrupt, has a negative balance,
or whatever.

Experiment 8: Programming Time
The numbers 1 -8 control time. To see the effect, just press [1J and
type a few notes. Now press any other number, play a few more notes,
and notice the timing difference. This adjustment sets the beat of the
music, as well as the feel of the keyboard. After trying a few notes at
different times, press !@I again and see how the computer sounds with
changes in the timing notation.

195

Lesson 22: Player Piano (continued)

For a quick example of high speed playing, select the top octave with
the right arrow, clear Player Piano with I CLEAR I, and type these keys:

2 C B M I 1
I I I I 2 M
1 M M M M 2
B M B C 0 0

The screen will show these notes, with the top two notes scrolled off the top:

1 7 6 2
1 9 3 2
2 04 2
2 1 8 2
2 1 8 1
2 1 8 1
2 1 8 1
2 1 8 1
2 04 2
2 0 4 1
2 0 4 1
2 04 1
2 04 1
1 9 3 2
2 04 2
1 9 3 2
1 7 6 8

If you press a wrong key, back up with the up-arrow. You can back up
several notes, if necessary, but you cannot erase notes in the middle
of a song. You can also I CLEAR I and start again.

After your input matches the music, press � and hear it at full speed.
This particular tune could be added to a program to announce the winner
of a game or signal the start of a contest.

Experiment 9: Adding Music to a Program
There are two ways you can add your music to a computer program. Any
song with only a few notes can easily be played in a program by using
the S O U N D command for each note. The first column on the screen
shows the frequency number and the second column shows the dura-
tion. To add the song you just played, enter the following instructiops.
The line numbers you would add to each instruction would depend on
the location you wanted this tune to have in your program.

S O U N D 1 7 6. 2
S O U N D 1 9 3, 2
S O U N D 2 0 4, 2
S O U N D 2 1 8, 2
S O U N D 2 1 8. 1

196'--

S O U N D 2 1 8. 1
S O U N D 2 1 8. 1
S O U N D 2 1 8. 1
S O U N D 2 04. 2
S O U N D 2 04. 1
S O U N D 2 04. 1
S O U N D 2 04. 1
S O U N D 2 04. 1
S O U N D 1 9 3 . 2
S O U N D 2 04. 2
S O U N D 1 9 3 . 2
S O U N D 1 7 6. 2

Lesson 22: Player Piano (continued)

If you have a large number of notes to play, it would be easier to use a
program loop and a data statement, like this:

F O R L = 1 TO 1 7
R EA D F. D
S O U N D F. D
N EXT L
DATA 1 7 6. 2. 1 9 3 , 2 . 2 04. 2 , 2 1 8. 2 . 2 1 8 .
1 , 2 1 8 . 1 . 2 1 8. 1 . 2 1 8 . 1 . 2 04. 2 . 2 04. 1 . 2
04. 1 . 2 04. 1 . 2 04. 1 . 1 9 3 . 2 . 2 04, 2 . 1 9 3 .
2 . 1 7 6. 2

Either method will create the same sound when added to a program. For
short songs, a separate instruction and S O U N D command for every
note is easier. Longer songs can be handled more easily if you use the
second method and program a loop with DATA statements. With
either method, each instruction would have a line number matched to
its position in the program.

If you wish to play the same song more than once in a program, you
need to restore the data with a R E STO R E instruction.

More Notes With More Memory
Both the program and the notes you have played are stored in the
computer's memory. If your Color Computer has more than 4K
memory, you can have more than 74 notes stored in your song. If your
computer has the 1 6K memory expansion, change Line 20 in the
program to allow more storage space for the music.

2 0 D I M S (1 2 0 0)

This change allows 1200 numbers to be stored by the program. Since one
number is required for the frequency and one more for the duration,
this means that you can store and play back a song up to 600 notes
long.

197

Lesson 22: Player Piano (continued)

If you run over the note storage limit with either size memory, the
computer will print B S E R R O R I N 1 9 0 . To restore the program, type
�[Q][!][Q]O�[Q] . This will allow you to hear and edit the song you
have entered.

Keyboard Summary
Here is a complete diagram of the keyboard and its functions:

. . . N ote Ti m e . . .
2 3 4 5 6 7

H o l d O ctave
s o � -+

i;/ #, # # #

·# # # #
A s F G J K L - - ... - - ·-

z x c v B N M < > ?

A B C D E F G A B C

I CLEAR I = Erase Song
(fl = Play [@I Play Fast
ttJ = Back Up

Fequency Look-Up Table
This table shows the musical note in the key of C, the typewriter key that
corresponds to that note, and the frequency numbers for all three
octaves. The middle octave is set initially.

Lesson 23: Menus

Lesson 23: Menus
Program Titles and Starting S creens

Your software can begin with a menu, listing a selection of possible
things to do. Examples include the menus in Temperature Converter,
Lesson 15, and in Car Calculator, Lesson 20. At the beginning of each
of these programs, the computer prints a menu and lists several
alternatives. When a selection is made by typing a number, the
computer branches to the correct section of the program.

These menus each serve the same function. The difference is in the words
printed on the screen and in the particular line numbers that are
selected.

Simple Menu Module: Temperature Converter
The menu module used in Temperature Converter looks like this on
your screen:

TE M P E RATU R E C O NVE RTE R

1 . FAH R E N H E I T TO C E LS I U S
2 . C E LS I U S TO FA H R E N H E I T

S E LE CT (1 , 2) ?

I f you don't remember what this menu does, load the Lesson 15 cassette
and run the program again. When you type [I] and press I ENTER I . the
program branches to the section that convert,s fahrenheit temperatures
to celsius. If you select (2) and press I ENTER I . the program branches
to a different section and converts temperatures from celsius to
fahrenheit. Notice that the I ENTER I key must be pressed after the
number is entered.

Here is how the menu section of this program is written:

1 0 C LS : P R I NT
2 0 P R I NT "
3 0 P R I N T
4 0 P R I N T "
5 0 P R I N T "
6 0 P R I NT
7 0 I N P UT "
8 0 C LS : P R I NT

TE M PE RATU R E C O NV E RT E R "

1 . FAH R E N H E IT T O C E LS I U S "
2 . C E LS I U S TO FA H R E N H E IT'

S E LE C T (1 , 2)" ; S

9 0 O N S G OTO 1 00, 2 00

Where the word P R I NT appears, the computer prints any message in
quotes and spaces down one line on the screen. In Lines 10, 30, and 80
the P R I NT instruction is used to skip a line. Notice how this creates

--- 199

Lesson 23: Menus (continued)

a space after the title, before the S E LECT (1 . 2) line, and at the
beginning of the next frame in the program. These spaces are added
for appearance and don't actually affect the running of the program.
Details like this can help your programs look better and be easier to
read.

After the menu title and a list of the selections (Lines 10-60) are printed on
the screen, the I N PUT instruction is used to print the select line and
input the number from the keyboard. When the I N PUT instruction is
used, the I ENTER I key must be pressed after the number is typed.

You can easily change the information on the screen to match the
actual selections in your program. Additional selections may be
added by adding more lines. As an example, your menu could look
like this:

* C O M PUTE R C H E S S *

BY R I C K PR O G RAM M E R

1 . O N E - P LAYE R GA M E
2 . TWO - P LAYE R GAM E
3 . C H E S S D E M O N STRATI O N
4 . C H E S S TEAC H E R

S E LE C T (1 - 4)

The number of selections, as well as printing on the screen, can be
adjusted easily. After a number has been entered, the program must
react to the user's selection.

One way to do this is to use the O N G OTO instruction to send the computer
to a specific line in the program. In Temperature Converter, this
instruction in Line 90 sends the computer to Line 100 if the input is
a [1] and to Line 200 if the input is a @. The sections of the program
beginning at Lines 100 and 200 input the temperature, calculate the
answer, and print the results .

Advanced Menu Module: Car Calculator
The more advanced menu used in C ar Calculator has two important
advantages over the Temperature Converter menu. It does not require
the use of the ENTER key after the selection has been typed and it
automatically reprints the menu if a wrong key is pressed. If you
load the Lesson 20 cassette and run the program you will see this
menu on the screen:

200'--

Lesson 23: Menus (continued)

. . . CAR CALC U LATO R

1 . .D I STA N C E TRAVE L E D
2 . TI M E R E Q U I R E D

3 . AVE RAGE S PE E D
4 . GAS M I L EAG E

S E LE CT (1 - 4)

Notice that there is no question mark after the S E LE CT (1 - 4) line in the
menu. If you press any key from 1 to 4, the program will branch to the
appropriate section. This action is immediate and the ENTER key is
not required. Press any other number or any letter on the keyboard
and the menu will blink, showing that the input does not work.

This menu is much easier to use than the menu in Temperature
Converter. Pressing ENTER after each number is not difficult, but
it is an extra step that you can eliminate with more careful
programming. With new computer users, forgetting to press ENTER
after a selection can cause confusion and make computers seem "hard
to understand." In a similar way, having the computer blink the menu
if they press a wrong key is a gentle reminder that helps make
computers easy to use.

Compare this listing from Car Calculator with Temperature Converter
and see how these two important features have been added. As before,
you can change the words and the number of selections in your menu
to match any program you write.

1 00 R E M . . . M E N U . . .
1 1 0 C LS : PR I NT : P R I NT
1 2 0 P R I N T " . . . CAR C A LC U LATO R
1 3 0 P R I NT: P R I N T
1 40 P R I N T "
1 5 0 P R I N T "
1 6 0 P R I N T "
1 7 0 P R I NT "
1 8 0 P R I NT : P R I NT

1 . D I STAN C E TRAVE L E D "
2 . TI M E R E Q U I R E D"
3 . AVE RA G E S P E E D"
4. GAS M I LEAG E"

1 9 0 P R I NT " S E L E C T (1 - 4)
2 0 0 K $ =1 N K EY $: I F K $ =" " G OTO 2 0 0
2 1 0 S E L =ASC (K $) -48
2 2 0 C LS
2 3 0 O N S E L G OTO 3 00, 4 00, 5 00. 6 0 0
2 40 G OTO 1 00

L I N E S 1 1 0- 1 9 0 print the menu on the screen.

L I N E 2 00 sets the string variable K $ equal to the key pressed. If no
key is pressed, K $ =" " and Line 200 repeats. As soon as any number
or letter is typed, K $ is set equal to the key.

__ 201

Lesson 23: Menus (continued)

L I N E 2 1 0 sets the vari
.
able S E L equal to the value of the key. If []

is pressed, S E L= 1 ; if @] is pressed, S E L=3 .

L I N E 2 3 0 sends the program to the designated lines i f S E L is equal to
1 , 2 , 3 , or 4. If any other number or letter is pressed, the program goes
to Line 100 to clear the screen and print a new menu.

Advanced Menu Module: Graphics
Graphics, Lesson 21, shows another example of this technique. Here,
the program design is the same and only the words on the screen and
the specific line numbers for the sections that follow have been
changed.

Here is the menu as it appears on the screen, followed by the actual
instructions used in the program:

. . . G RA P H I C S . . .

1 . G RAPH I C S C HARACTE R S
2 . B I L LB OAR D S & S I G N S
3 . ART & A N I MATI O N

S E LECT (1 - 3)

1 00 RE M . . . 1G RAP H I C S
2 0 C LS : P R I NT : P R I NT
3 0 0 P R I N T " . . . G RAPH I C S
4 0 P R I NT
5 0 P R I NT "
6 0 P R I NT "
7 0 P R I NT "
1 00 P R I N T

1 . G RAPH I C S C HARACT E R S"
2 . B I LLBOA R D S & S I G N S"
3 . ART & A N I MATI O N "

1 1 0 P R I N T " S E LE C T (1 - 3) "
1 2 0 K $ =1 N K EY $: 1 F K $ =" " G OTO 1 2 0
1 3 0 K =AS C (K $) -4 8
1 40 O N K G OTO 1 0 3 0, 2 000, 3 000
1 5 0 G OTO 1 0

On Your Own
Use these two menus as examples and pick either the simple version
or the more advanced version and simply copy the instructions.
Naturally, you will use text and line numbers that match your
program design. A menu can begin your program, or it can be used
anywhere within. With commercial programs, several menus are
often used to direct people through many possible alternatives and
selections. In some programs, a menu can be called from anywhere in
a program to select a new set of options.

202 .__ __ _

Lesson 24: Program Restarts

Lesson 24: Program Restarts
Program Endings with Automatic R estart

Many programs are designed with an automatic restart feature. This
option can be added to any program with a few simple instructions.

Go Again (Y,N)?
The first lesson in this book, Mathematician, has a program restart
option. After the program has calculated the answers, the computer
prints G O AGA I N (Y, N) ? and waits for an input. Here is the complete
program:

1 0 I N P UT "A";A
20 I N P UT "B"; B
3 0 P R I NT "A + B =";A + B
4 0 P R I NT "A - B =";A - B
5 0 P R I NT "A * B =";A * B
6 0 P R I NT "A I B =";A I B
7 0 I N PUT "GO AGA I N (Y, N) ?" ; K $
8 0 I F K $ ='Y' G OTO 1 0

The lines that create the restart are Lines 70 and 80. Line 70 prints the
message on the screen and sets the string variable K $ equal to
the key you press. All I N PUT instructions require the I ENTER I key,
and K $ is set equal to the key you type only after the I ENTER I key is
pressed. After this input, the computer compares K $ with the letter
Y . If K $ ="Y" the computer goes to Line 10 and the program begins
again. If any other key is pressed, the computer goes to the next line
in the program. Since Line 80 is the last line, the program stops if
the key pressed is not Y .

In Guessing Game, Lesson 3, the autostart feature is added in Lines 80
and 90. These additions to the program work exactly the same way
as the previous example, except that the text is changed to match the
new program. With these lines added, the computer prints TRY
AGA I N (Y, N) ? and picks a new number for you to guess if your
answer is Y . Again, you must press the I ENTER I key after selecting
your answer. Here are the actual instructions used for this program
restart:

8 0 I N PUT "TRY AGA I N (Y, N)" ;A $
9 0 I F A $ ='Y' G OTO 1 0

These same instructions, with different line numbers, are used in Cipher
and Music Teacher. The programs, Area Calculator and Coloring Box,
simply print M O R E (Y, N) ? and restart if the input is a IY] . This
technique is also used in Temperature Conversion to ask AN OTH E R
C O NVE R S I O N (Y, N) ? You can, of course, change the message within

203

Lesson 24: Program Restarts (continued)

the quotes to anything you like, such as: C A R E TO TRY O N E M O R E
TI M E (Y, N) ? or even P LAY I T AGAI N , SAM (Y. N) ?

Restart Without the ENTER Key
In Hangperson, Lesson 1 1 , the restart feature uses the I N K E Y $
instruction instead o f I N PUT, a s with previous programs. This
change makes the program easier to use because the ENTER key is
not required. Another change is necessary because of the DA TA
statements that follow the main program. Here is the section of
Hangperson that creates the program restart:

4 2 0 P R I NT "TRY AGAI N (Y, N) ?"
4 3 0 X $ = 1 N K EY $: 1 F X $ =" " G OTO 4 3 0
4 4 0 I F X $ ="Y" TH E N R U N E L S E E N D

The first change, the elimination of the ENTER key, is accomplished by
switching from I N P UT to I N K E Y $ as a method for inputting the key
from the keyboard. In this version above, the computer prints the
question (with the question mark) and waits for a key to be pressed.
Immediately after a key has been pressed, the computer runs the
program from the beginning. In this program, R U N is used because
the command G OTO 1 0 would cause an error. The D I M E N S I O N
statement in Line 20 is only used once in a program and cannot be
repeated.

The second change from previous restart instructions is the E N D
command. This provides an alternative to restarting the program
with R U N . If the program were to continue after Line 440, the
computer would read the subroutine starting at Line 500 and create
another error. With the restart instructions as shown, the computer
will run the program if the key pressed is IYJ and end the program if
any other letter or number is pressed.

In Car Calculator a similar set of instructions is used to restart the
program. Again, the ENTER key is not required and the program
repeats autolnatically if IYJ is pressed. With these instructions, the
computer clears the screen if you do not wish to continue with the
program:

7 00 R E M . M O R E ? . . .
7 0 5 P R I NT
7 1 0 P R I NT " AN OTH E R CA L C U LATI O N (Y, N) ?"
7 2 0 K $ =1 N K E Y $: 1 F K $ =" . . G OTO 7 2 0
7 3 0 I F K $ ="Y" G OTO 1 00 E LS E C LS

The choice between I N P UT and I N K EY $ as a method for creating the
program restart depends on whether you want the person using your
program to have to press the lENTERI key or not. I N K E Y $ reacts
immediately to any key while I N PUT waits for the enter key to be pressed.

204 .._ __ __

Lesson 24: Program Restarts (continued)

In a program like Cipher, the response to the keyboard during the game is
immediate and I N K EY $. is used for all inputs to the program. In
programs where the user is pressing I ENTER I throughout, I N PUT can be
used for program restarts because pressing I ENTER I after the Y, N
question would seem like a natural response.

I N K E Y $ can be used when only one key is to be entered or when you
know exactly how many keys will be typed. If more than one key is to
be entered at one time and the length is uncertain, as with a name,
I N PUT is required.

-- 205

Lesson 25: Time Delays

Lesson 25: Time Delays
Controlling Time Intervals with Counters and Sound

With many program designs, speed is an important consideration.
Having the software run as fast as possible is usually the goal. If you
are moving objects in a game, for example, you usually want them
to move quickly. With a few programs, however, a time delay or
pause is essential to their operating at the right pace or speed.

With your Color Computer, you create time delays whenever the S O U N D
instruction is used. When you program the computer to create a
sound, the other activities in the program automatically stop until
the sound has finis;hed, then the computer continues with the next
instruction. You can also create silent time delays by using a short
program loop.

Time Delay: Decision Maker
In Decision Maker, Lesson 8, a time delay is used to program a hold that
displays the image on the screen for a specific length of time. Here is
the single instruction that creates the delay:

9 0 F O R D LY= 1 TO 5 0 0 : N E XT D LY

After printing the answer on the screen, the computer completes this
instruction. If you look closely, you will see that it does nothing but
wait as the computer counts from 1 to 500. After this counting is
complete, the computer goes on to the next instruction in the program
and clears the screen.

This pause is added to the program so that the answer will remain on the
screen for a short time, and then be erased by the next few instructions.
The variable D L Y keeps track of the count. The length of time the
program waits at Line 90 is set by the number in the instruction. If a
number larger than 500 is used, the delay is increased.

The S O U N D instruction can also be used to create program delays
because the Color Computer does not run any other instructions while
the sound is being generated. This instruction creates a similar delay
by playing a random note for a duration of 25:

9 0 S O U N D R N D (1 00) . 2 5

In practice, either the program loop or the tone can be used with
identical results as far as the timing is concerned. With either method,
trimming, or slight adjustment of the timing interval, is done by
adjusting the number shown. For the program loop, changing the
number of times the loop cycles will change the time delay. For the
tone, adjusting the second number (25 in the example above) will
change the duration of the sound and the time delay in the program.

-- 207

Lesson 25: Time Delays (continued)

Time Delay: Time Machine
In Time Machine, Lesson 12, a single instruction is used to slow the
program a specific amount so that the total program cycles in 0 . 1 second.
In this example, the variable used is T and the complete instruction looks
like this:

9 0 F O R T= 1 TO 1 9 : N EXT T

The number 19 was chosen so that the complete program would cycle at
the correct rate to create a clock. This delay is, of course, much shorter
than the delay in Decision Maker where the program cycles 500 times
before continuing.

The experiments in Lesson 12 show how a ticking sound can be added
to the clock. This addition slows the program down and requires an
adjustment in the time delay to keep the total program cycle time at
0 . 1 second. In fact, any change in a program will affect its overall
speed, including the addition of new instructions or extensions and
additions to existing lines.

208'---

Lesson 26: Inputs

Lesson 26: Inputs
Using the Keyboard to Control Programs

The person using one of your programs will usually not be aware of the
instructions, the G O S U B s, and the details of your work. They will be
very aware of the input sections of your program, however, because
these sections determine how they interact with the computer. If you
handle the inputs well, your programs will be easy to follow. Inputs
that are awkward or unclear will immediately make your program,
and the computer, hard to use.

Keyboard inputs used with many programs in this book contain
messages or prompts that tell the user what to do next. Wherever
possible, the ENTER key is not required and the computer responds
immediately, like a piano keyboard.

Simple Inputs: Mathematician
In the first lesson, two variables are used in the program to represent
the two numbers to be added, subtracted, multiplied, and divided. The
program steps for setting these variables look like this:

1 0 I N PUT "A"; A
2 0 I N PUT "B" ; B

When these instructions are read by the computer, the letter inside the
quotation marks is printed, followed by a question mark. When a
number is typed and the IENTERI key pressed, the computer prints the
input on the screen and sets the variable equal to the number.

Any message may be written inside the quotation marks and printed
on the screen. These instructions would be even more clear if they
were written like this:

1 0 I N PUT "N U M B E R A=";A
2 0 I N PUT "N U M B E R B =" ; B

You may want to go even further in telling the user how to interact
with your program and print complete instructions, like this:

1 0 I N PUT "TY P E A N U M B E R F O R A T
H E N P R E S S TH E E NT E R K EY";A
1 5 P R I N T
2 0 I N PUT "NOW I N PUT A N U M B E R F O R

B AN D P R E S S E NT E R AGAI N " ; B

When these instructions are run, the screen will show:

209

Lesson 26: Inputs (continued)

TYP E A N U M B E R F O R A TH E N P R E S S
TH E E NTE R K EY? 5

NO W I N P UT A N U M B E R F O R B A N D
P R E S S E NTE R AGAI N ? 6

Notice that the extra spaces after the word A N D in Line 20 are used
to space the words correctly on the screen and that the computer
automatically adds a question mark after the message. While this
amount of on-screen instruction would be ideal for someone using a
computer for the first time, this could be too much for an experienced
user and might get boring if you repeated this amount of information
for many inputs in a program.

Input Single Letter: Go Again?
The easiest way to program the computer to print a message and
get a letter from the keyboard is with this instruction, as used in
Mathematician:

7 0 I N PUT "GO AGAI N (Y, N)" ; K $

The computer will print the message inside the quotes and wait for you
to type one or more keys and press I ENTER I. The string variable K $
will contain the key or keys you type.

You can eliminate the ENTER key by using I N K EY $. First print a
message telling the user what to do, then get an input from the
keyboard with I N K EY $. S ince I N K EY $ reads the keyboard
immediately, you will need a program loop to scan the keyboard until
a key is pressed. These instructions are used with many programs to
get a s ingle letter:

1 0 P R I NT "GO AGAI N ? (Y. N) "
2 0 K $ = 1 N K EY $: 1 t- K $ =" " G OTO 2 0

Notice that Line 1 0 prints the message and that Line 20 cycles or
repeats until a key is pressed. If no key has been pressed, K $ is a
blank (" ") and Line 20 repeats over and over again.

The next line in your program will tell the computer what to do with
the input. In the above example, Y could send the computer back to
the beginning and any other letter could end the program. While this
example is often used to create program restarts, this technique can
also be used for many other applications.

The dollar signs after I N K EY $ and K $ tell the computer that the
variable can be any key on the keyboard - a letter, number, or
punctuation mark.

210 .._ ___ __

Lesson 26: Inputs (continued)

Input Single Digit Numbers
If your program requires a numerical input, and you know the total
number of digits, you can write instructions using I N K EY $ and
eliminate the ENTER key. This simplifies the input for the user and
makes interaction with the program faster and easier.

In using I N K E Y $ to get a key from the keyboard, you must convert
the string variable to a number. These instructions input a single key
as a string variable and convert the input to a number. If the key
pressed is [!], for example, the string variable K $ will be set to "1 "

and the number variable A will be set to the number 1 :

1 0 P R I NT " N U M B E R A ="
2 0 K $ =1 N K EY$: 1 F K $ =" " G OTO 2 0
3 0 A =AS C (K $)-48

This short program inputs a single key and sets A equal to the
ASCII value of the key minus 48. Since the ASCII value of the
numbers is their number plus 48, this program automatically sets
the variable A equal to the number typed.

The reason for this complicated dance with I N K E Y $ and ASCII
values is to get numbers from the keyboard without having to press
ENTER. To convince yourself that this works, run the program, type
any number on the keyboard, and print the value of A .

If you would like the computer to echo or verify the number you type,
add a semicolon to Line 10 so that the printing will continue on that
line, then add a print instruction:

1 0 P R I NT " N U M B E R A =";
20 K $ = 1 N K EY $: 1 F K $ =" " G OTO 2 0
3 0 A =AS C (K $) -48
4 0 P R I N T A

Here is M athematician, rewritten so that the response is immediate
and the ENTER key is not used. As you can see, the programming
is much more complex than in the earlier version. Enter this program
and see that it is much faster and easier to use, then you can decide
if this programming technique is worth the additional effort.

1 0 P R I NT " N U M B E R A =";
1 2 K $ =I N K EY $: 1 F K $ ="

. .
G OTO 1 2

1 4 A =AS C (K $)-48
1 6 P R I NT A
2 0 P R I NT "N U M B E R B =" ;
22 K $ = 1 N K EY $: 1 F K $ =" " G OTO 2 2
2 4 B =ASC (K $) - 4 8
2 6 P R I NT B
3 0 P R I NT "A+B =";A+B

211

2 12

Lesson 26: Inputs (continued)

40 P R I NT "A - B =";A - B
5 0 P R I N T "A * B =" ;A *' B
6 0 P R I NT "A I B =";A I B
7 0 P R I NT "M O R E ? (Y, N) "
7 2 K $ =1 N K EY $: 1 F K $ =" " G OTO 7 2
8 0 I F K $ ="Y" TH E N C LS :G OTO 1 0

Notice that this program only allows single digit numbers for A and
B . If you wish to input numbers larger than 9, another step must be
added to the program.

Input Multi-Digit Numbers: Math Teacher
The easiest way to input numbers such as 123 and 45654 is with the
I N PUT instruction, like this:

1 0 I N PUT " N U M B E R PLEAS E"; N

The variable N will be set to whatever number you type (up to nine
digits long) , after the IENTERI key is pressed. In Math Teacher and
similar programs, pressing IENTERI after each answer simply does not
work because students will soon get tired of it.

These instructions in Math Teacher compare the number of digits
typed on the keyboard with the number of digits in the answer. When
they are equal, the input is complete and the computer checks to see if
the answer is correct. If the correct answer is 6, for example, the
program will compare the input as soon as any key is pressed. If 23 is
the correct answer, the computer will wait until two keys have been
pressed before comparing the input with the correct answer.

400 R E M . . . I N PUT M O D U LE
4 1 0 B $ =" "
4 2 0 A $ = 1 N K EY $
4 3 0 I F A $ =" " G OTO 4 2 0
4 4 0 P R I NT A $;
4 5 0 B $ = B $ +A $
4 6 0 I F X > 9 AN D L E N (B $) < 2 TH E N 4 2 0
4 7 0 I F X >9 9 AN D L E N (B $) < 3 TH E N 4 2 0

I n this example, the variable X is equal to the correct answer. The
numbers typed on the keyboard are combined until the total number of
digits is the same as the answer. With this approach to program
design, the student can enter answers quickly, with the computer
responding immediately to the input.

Lesson 26: Inputs (continued)

Input Word: Hangperson
Whenever you wish to input a word, such as the code word in
Hangperson or the player's name in a game program, the user will
have to use !ENTER! because the computer will have no way of
knowing when the input is complete. If you add a reminder to press
I ENTERI, there will be no possibility that the user will type a word and
then wait, wondering why the computer isn't doing anything.

Here is how this reminder is added to the cassette version of
Hangperson. You can use this approach whenever your programs
require that the IENTERI key be used:

1 0 C LS : P R I NT '"TYPE C O D E WO RD, P R
E S S E NTE R K EY"
1 2 I N PUT W $

On Your Own
The methods you use in creating inputs for your programs will influence
how people feel about your software. If the inputs make sense, are
easy to use, and operate immediately whenever possible, your
programs will help people use computers in a friendly, secure way.
The reverse, inputs that are confusing and slow, will make your
software seem badly designed, even if the concepts are brilliant.

An important question to ask yourself in evaluating your own work is
whether the choices for action at each point in your program are clear
or not. It is perfectly fine to create situations wherein the choices are
hard to make, as in a strategy game, but there should be no difficulty
at all in understanding what the choices are.

Another point to consider is the consequence of an incorrect entry at
any point in your program. In the Advanced Menu Module, for
example, the screen blinks if you enter any letter or number that
doesn't match the choices shown. This non-destructive interaction
when someone types a wrong key is a gentle acknowledgement of a
mistake. This is far better than doing nothing with a wrong ent,ry
and having the user sit, wondering what happened.

-- 213

Lesson 27: Music and Sound Effects

Lesson 27: Music and Sound Effects
From Bach to BANG!

Music, beeps, and other sound effects are used in many programs in this
book. Except for Music Teacher and Player Piano, these sounds are
not required and are added just for effect. This simple addition of a
few beeps here and there in your programs can make a big difference.
People have been hearing computers make beeps and clicks in scien.ce
fiction movies and TV space operas for many years. So don't overlook
the possibility of sound effects, or even music, when you are adding
the finishing touches to any program.

Music is discussed in Lesson 22, where you can use the Player Piano
model to create and play tunes. Adding your compositions to any
program is simply a matter of copying the data, as described in the
lesson. The other sounds produced by the Color Computer are
"music" in that they are made up of single-frequency tones. Adding
randomness to the pitch and the duration, however, can produce a
wi<le range of "computer" sounds. Whistles and shrieks result when
you change the frequency in a program loop.

Music: Cipher
If you have played the Cipher program and broken the code word, you
have already heard the victory tune at the end. This tune was first
developed on Player Piano. After playing a tune on the piano and
editing it until it is correct, you can transfer the tune to any program
by copying the numbers on the screen.

This process is described in Lesson 23. In Cipher, the tune looks like this
in the program listing:

6 0 0 R E M . . . S C O R E B OA R D . . .
6 1 0 P R I NT
6 2 0 I F R < P G OTO 3 0 0
6 4 0 S O U N D 1 2 6 . 6
6 4 2 S O U N D 1 48 . 4
6 4 8 S O U N D 1 2 6 . 2
6 5 0 S O U N D 1 3 2 . 2
6 5 2 S O U N D 1 48 . 2

Feedback: Sorting
In Sorting, Lesson 14, sounds are used to help you see what is happening
as the program runs. A short beep is played each time the computer
sorts one of the items on the screen. As the process continues, less
and less time is required to sort each item and the beeps get faster.

215

Lesson 27: Music and Sound Effects (continued)

Audio feedback like this can help you follow the progress of any soft­
ware if you place instructions for different sounds at different places
in the program. To find out how many times a subroutine is being
called, for example, you can add a beep before the R ETU R N and just
listen. In large programs with many branches, different notes in each
section can be a diagnostic tool.

Music to Think By: Decision Maker
You can use random numbers to create a wide variety of "computer
sounds." In Lesson 8, the Music to Think By experiment adds a
computer sound effect with these lines:

3 5 F O R S = 1 TO 1 0
3 6 S O U N D RN D (1 00) + 1 5 0. R N D (6)
3 7 N E XT S

The random number generator in your Color Computer is used twice in
Line 36. The number controlling the frequency or pitch of the sound
is equal to R N D (1 00) + 1 5 0 . This is a random number from 1 to
100, added to 150. The net result is a random frequency number
from 150 to 250. The range of frequencies and the variation in
timing were selected because the effect sounds, to the designer, like
a computer thinking. Changing any of the numbers in Line 36 will
create a different effect. The right modification would probably create
something you would prefer.

If you would like to experiment with computer sounds, try this short
program that lets you change the numbers in Line 36 and hear the
results.

1 0 R E M . . . C O M PUTE R S O U N D S
2 0 C LS
3 0 I N PUT A. B . C . D
40 FO R L = 1 TO D
5 0 S O U N D R N D (A) +B . R N D (C)
6 0 N E XT L
7 0 P R I NT A; B ; C ; D
8 0 G OTO 3 0

When you run this program, enter these numbers: 100, 150, 6, 10. This
will duplicate the effect used in Decision Maker. To copy the frequency
range used for the robot in Graphics, Lesson 7, input the numbers 10,
230, 3, 10. The robot speech uses an additional delay between the
sounds.

After the sound stops, enter another set of numbers and hear the
change. If your choices result in numbers that are greater than 255,
the program will stop and print: FC E R R O R I N 5 0 .

216L--

Lesson 27: Music and Sound Effects (continued)

Dribble: Music Teacher
In Music Teacher, a special sound effect was programmed to signal a
mistake. It is easy to program the computer to make a loud buzz, of
course, but the sound effect was created for a different result. The
design goal was to show that the particular note that was played does
not work, rather than simply saying: "You blew it!"

The instructions below are used in Music Teacher to rapidly lower the
frequency of the note that is not correct. This shows the note, not just
the player, to be a wrong choice at this time. This dribble effect will
sound slightly different for each note on the scale.

3 0 0 R E M . . . O O PS !
3 1 0 F O R L=F-8 TO 1 STE P -8
3 2 0 S O U N D L, 1
3 3 0 N EXT L

To hear this effect, load the Lesson 7 cassette and make a mistake, or copy
the program above. Simulate the wrong note by inputting a value for
F , like this:

1 0 I N P UT 1 'FR E O U E N CY N U M B E R (1 - 2 5 5)" ; F

Animated Speech: Graphics
Creating a computer voice for our robot in Graphics, Lesson 7, required
a continuous loop to create the sound as well as the opening and
closing of the robot's mouth. Here is the complete section that produces
the effect:

3 2 00 R E M . . . S P EAK
3 2 1 0 T = R N D (3 0 0)
3 2 2 0 F O R D LY = 1 TO T : N E XT D LY
3 2 3 0 P R I NT @ 5 *3 2 + 1 5 . " =" ;
3 2 40 S O U N D R N D (1 0) + 2 3 0. R N D (3)
3 2 5 0 P R I NT @ 5 *3 2 + 1 5 . " -" ;
3 2 6 0 G OTO 3 2 00

If you clear the screen and run this program you will see the robot's
mouth near the center of your screen and hear the speech sounds. It
is easier to load the Lesson 7 cassette, select [ID from the menu, and see
the complete picture.

On Your Own
In helping you create music and sound effects, the computer can be a
valuable instrument. A key in learning to control the wide range of
possibilities is to write short programs that let you experiment with
ideas and hear the results right away. With this feedback, you can
explore ideas or compositions and use the computer to play them.
-- 217

Lesson 27: Music and Sound Effects (continued)

Computer music itself is a field that may interest you. While this
book has used music as an add-on to programs, a complete compo­
sition played by a computer is well within the capabilities of your
Color Computer. Many modern compositional forms may be written
in software and played by computer. Randomness can be used in
programs to create many kinds of variations in pitch and tempo. Or
you may be more interested in building an instrument you could play,
similar to Player Piano.

218 --

Lesson 28: Rounding Off Numbers

Lesson 28: Rounding Off Numbers
Making the Digits Fit and Printing Dollars and Sense

The computer often creates answers such as 2 1 . 1 1 1 1 1 1 1 or 266.666667
when dividing two numbers. The computer automatically rounds off
these answers to nine digits. With programs like Temperature
Converter and Interest Calculator, it is much better to round off
answers like these. When printing dollar amounts it is also a good
idea to round off to the nearest penny, rather than show a balance
of $13.33333.

The Integer Function
When the integer function is used, the computer retains only the integer
or whole number and discards any fractional part.

Number Integer

1 1
1. 123 1

1 1 .4 1 1
21 .899 2 1

. 955 0

The integer of any number is created with this instruction, where N is
the number:

N =I NT (N)

I t i s more common t o consider a fractional part of a number and to round
off the answer. That is, if the fraction is .5 or more, the next highest
number is used. To duplicate this with the integer function, just add
0.5 to the number before the integer is calculated.

N =I NT(N + . 5)

With this change, the numbers from the previous table look like this:

N INT(N) INT(N+.5)

1 1 1
1 . 123 1 1

1 1 .4 1 1 1 1
2 1 .899 2 1 22

.955 0 1

219

Lesson 28: Rounding Off Numbers (continued)

Nearest Degree: Temperature Converter
In Temperature Converter, the answers are rounded off to the nearest
degree. This is done by adding .5 to the answer and creating the
integer of the result. Both conversion sections of this program use
the same design, like this :

1 0 0 I N PUT " H OW MANY D E G R E E S F" ; F
1 1 0 C = 5 / 9 *(F -3 2)
1 1 5 C = I NT(C +. 5)
1 2 0 P R I N T F : " D E G R E E S F ="; C ; " D E G
R E E S C "

I n Line 1 10 the variable C is set equal to the temperature in celsius.
The next line rounds this value off to the nearest degree. It would be
possible to round off the value to the nearest tenth of a degree by
substituting this instruction:

1 1 5 C =I NT(C * 1 0+ . 5) / 1 0

Now the value is multiplied by 10, rounded off to the nearest integer, and
divided by 10 again. The effect will be to round off all values of C
to the nearest . 1 degree, as shown below:

N INT(N) INT(N+.5) INT(N*10+.5) / 10

1 1 1 1 . 1
1 . 123 1 1 1 .0

1 1 .4 1 1 1 1 1 1 .4
2 1 .899 2 1 22 2 1 .9 .955 0 1 1

The number 10 in Line 1 15 creates a final value that is rounded off to one
decimal place. Replacing 10 with 100 creates a value that is rounded
off to two decimal places. Similarly, you can increase the number of
zeros in the number used in Line 1 15 and increase the number of
decimal places in the final answer.

Nearest Penny: Interest Calculator
A common requirement for business programs is to calculate and print
results to the nearest penny. Since this represents a number of
dollars, accurate to two decimal places, the number 100 is used to
round off the answer. This instruction from Interest Calculator can
be used to round off the number N to two decimal places.

I NT (N * 1 0 0 +. 5) / 1 00

While maintaining your accounts t o the nearest p enny may seem accurate

enough, business programs often keep dollar amounts to the nearest
mill, or one tenth of a cent.

220L--

Lesson 29: Scoreboards

Lesson 29: Scoreboards
Who Won?

A report card or progress report can be an important part of any educa­
tional program. Similarly, almost any game program, whether it is a
strategy game or a high-speed action game, can benefit by the addition
of a report or scoreboard at the end. The format for either of these
reports is similar to the Menu Module in that a message is printed on
the screen, showing the status of the program. The question, G 0
AGA I N (Y, N) , can also be included in the display.

Report Card: Math Teacher
The scoreboard in Math Teacher is used to show the student's progress
in two ways. After 20 problems have been answered, the report card
shows the number of correct answers and the skill level. Here are
the actual instructions used in Math Teacher:

7 0 0 R E M . . . R E PO RT C A R D . . .
7 1 0 C LS : PR I NT
7 2 0 P R I NT "
D . . . " : P R I NT
7 3 0 P R I NT "
7 4 0 P R I NT "
: PR I NT
7 5 0 P R I NT "
S"; S : P R I NT
7 6 0 P R I NT "
I N (Y, N) ?"

. . R E PO RT CAR

YO U G OT'; 2 0-G
O UT OF 20 C O R R ECT'

YO U R S K I LL LEVE L I

SAM E P LAY E R G O AGA

7 7 0 Y $ =I N K E Y $: 1 F Y $ =" " T H E N 7 7 0
7 8 0 I F Y $ ="Y" TH E N C LS :G OTO 2 0

This format is very similar to the Menu except that two variables are
used to print the correct results. The variable G is used to store the
number of wrong answers. The number 2 0-G in the Report Card is
the number of answers that were correct. The variable S stores the
skill level. This number is dynamically adjusted by the program to
match the difficulty of the problems to the student's ability.

If a student misses one problem and has a skill level of five, the
scoreboard will show:

R E PO RT C A R D

YOU G O T 1 9

O UT O F 2 0 C O R R E CT

YO U R S K I LL LEVE L IS 5

SAM E P LAYE R G O AGA I N (Y, N) ?
221

Lesson 29: Scoreboards (continued)

With a similar design, you can add a scoreboard to show the results of
any program where variables in the program change. Just use print
instructions to write the messages on the screen, with variables
representing the quantities that change. The program restart line
can also be added to the report card, as shown in Lines 770 and 780
in this example.

Scoreboard: Multi-player game
A typical scoreboard for a two-player game could look like this after
each round:

S C O R E B O A R D

P LAY E R GAM E S WO N TO P S C O R E -
TO M 3 1 00

D I C K 2 1 2 1

HA RRY 8 5

SAM E P LAYE R S G O AGAI N ? (Y, N) ?

I n this example, you would need an input section at the beginning of
the program to input the players' names, and variables for storing the
number of wins and highest score for each player. As with any program,
the names you choose for the variables are up to you. Here are some
suggestions:

First player' s name P 1 $
Second player's name P 2 $
Third player's name P 3 $

First player's wins W 1
Second player's wins W2
Third player's wins W3

First player's max M 1
Second player' s max. M 2
Third player's max. M 3

You can easily create scoreboards that show the status of the players
and any other information you would like to display. If you design
the scoreboard early in the programming of your game idea, the
variable names you select can be picked to make their function clear.

222'---

Lesson 30: Dynamic Debugger

Lesson 30: Dynamic Debugger
Finding and Fixing Problems

If you try designing and writing your own program, you will find sooner
or later that it is easy to forget how your own software works. A
program that was perfectly clear to you when you wrote it can become
a mystery when you look at it after a day or two. One way to find out
how any program works is to run the program, look at all the variables,
and see how they change and what they do.

This lesson shows you how to create and use the Dynamic Debugger,
a powerful tool you can use to take the mystery out of almost any
program. You can use this tool to understand and be more clear about
your own work, or to figure out what someone else's software does.

Use Math Teacher as an example to see how the Debugger can help you
understand how a program works. Begin by loading the program
from the Lesson 17 cassette. Run Math Teacher and become familiar
with what it does.

Mark the Variables
As you can see, this program uses many variables to keep track of the
numbers used in the problems, the correct answers, the number of
wrong answers, TRM time delays, and many other factors. Go through
the listing and mark every variable used, including all the string
variables with dollar signs.

Write a Custom Debugger
The Debugger is a short program you put in the computer in addition
to the program you are trying to understand. The Debugger must
begin with a line number that has a higher line number than any line in
the mam program. Since the last line in Math Teacher is Line 780, this
Debugger can start at Line 1000.

To create a custom Debugger, just write an instruction to identify and
print each variable in the program. Here is an example using Math
Teacher:

1 000 R E M DYNA M I C D E B U GG E R
1 0 1 0 P R I NT "S " ; S
1 02 0 P R I NT " E " ; E
1 03 0 P R I NT " L" ; L
1 040 P R I N T "A" ;A
1 0 5 0 P R I N T "B" ; B
1 0 6 0 P R I NT "X" ; X
1 0 7 0 P R I NT "G" ; G

--..... 223

224

Lesson 30: Dynamic Debugger (continued)

1 0 8 0 P R I NT 'T' ;T
1 0 9 0 P R I NT "VA L (B $) " ;VA L (B $)
1 1 0 0 P R I NT "L EN (B $)" ; LE N (B $)

To check this program and see what it does, just type [gj[Q][I][Q]D
[1][Q][Q][Q] and run the Debugger. Your screen will show a printout of all
the variables and their current contents, like this:

G OTO 1 000
s 5
E 0
L 1
A 2
B 1
x 2
G 3
T 1 1 4
VAL (B $) 0
L E N (B $) 0
O K

The values you will see will depend on the status o f Math Teacher in your
computer. In the example above, the skill level S is 5, the two
numbers selected for the problem A and B are 2 and 1 , the correct
answer X is 2 , and so on. At first, you may not know exactly what
all the variables stand for. The point of the Debugger is that you can
use the program itself to see bow the variables change, and from this
you will be able to actually see what they do.

Experiment 1: Problem and Answer Check
The program description and the flowchart with Lesson 17 point out that
the variables A and P store the numbers in the problem, and that
the variable X stores the answer. Begin using the Debugger to find
out if this is actually happening or not.

1. Run the program as usual .

2. When the first problem appears on the
screen, press the IBR EAKI key to stop
the program.

3. Type ig:J[Q][!][Q]0[1][Q] IQ]IQ] to run the
Debugger program.

The printout on your screen will now show the first problem and the
information in all the variables. This lets you see what is happening
in the program at the point where the first problem is shown on the
screen. You will see that the variable A contains the first number in
the problem, variable B contains the second number, and variable
X contains the answer.

Lesson 30: Dynamic Debugger (continued)

The results you see will depend on the numbers chosen for the first
problem. In the following example, the computer happened to pick
5 - 2 = as the first problem, with these results:

5 - 2 =
B R EAK I N 4 2 5
O K
GOTO 1 0 0 0
s 5
E 0
L 1
A 5
B 2
x 3
G 2
T 2 4 2
VAL(B $) 0
L E N (B $) 0
OK

In this example, A = 5 , B = 2, and X= 3 . Your results will probably be
different, but the variables A , B , and X should match the problem
on the screen exactly.

When you are satisfied that the variables match, run the program again
and use the Debugger to check A , 8 , and X with a different problem
on the screen. Each time you run the program, the variables should
match, as before. This shows you that these variables are doing what
you expect them to and that the program is running correctly, up to
this point.

Experiment 2: Problem Counter Check
Now check and verify that the program counter is working correctly.
This counter is the variable L . In Line 20, L is used as the loop counter
to keep track of the number of problems that have been printed on the
screen. At the beginning, L should be equal to 1 . As the number
of problems increases, L should also increase to show the number of
the next problem. Notice the value of L on the screen. In the first
experiment, L is 1 because you stopped the program with the first
problem on the screen. Now check L with this technique:

1. Run Math Teacher and answer the
first 3 problems, leaving problem
number 4 on the screen.

2. Stop Math Teacher with IBR EAKI .

3. Run Dynamic Debugger with [g][Q][!][Q]D
[j][Q] [QJ [QJ .

--.... 225

Lesson 30: Dynamic Debugger (continued)

Again, your screen will show different values for other variables, but
L should be equal to 4 , like this:

7 * 6 =
B R EA K I N 4 3 0
O K
G OTO 1 0 00
s 8
E 0
L 4
A 7
B 6
x 1 2
G 3
T 1 4 3
VA L(B $) 0
L E N (B $) 0
O K

As you can see from your printout, A , B , and X match the problem and
the answer, as before, and L is equal to 4 .

Experiment 3: TRM Counter Check
Variable T is used to keep track of the time required for each answer.
Check the program and verify that T actually relates to the answer
time.

1. Run Math Teacher.
As soon as the first problem is
displayed, press IBR EAKI .

2 . Use Debugger t o find the value of
T and remember what the value is.

3 . Run Math Teacher again.
This time, wait for a few seconds
before pressing IBR EAKI . You have
now frozen the program in a
different condition, with a longer
time elapsed after the problem was
first displayed.

4. Use Debugger again to see the
value of T .
If the time delay before pressing
IBR EAKI was longer than before, the
value of T should be higher.

226'---

Lesson 30: Dynamic Debugger (continued)

5. Try this experiment again, waiting
for about a minute before pressing
IBR EAKI , stopping the program and
the timer.
The value of T should increase in
proportion to the time elapsed.

You can repeat this experiment as many times as you like to check the
operation of the TRM timer. The variable T is incremented in Line
425, which is part of the Input Module. As long as the program is
waiting for an input, T will contiue to increase. When any key is
pressed for the answer, the value of T is saved and used later to
adjust the skill level.

On Your Own
You have used Math Teacher to show how the Debugger can help you
see what is happening in a program. Notice that you can stop at any
point with IBR EAKI and use Debugger to see exactly what is going on.
With patience, this programming tool can be a valuable aid in under­
standing other people's programs, finding out what any variable in a
program actually does, and even helping you recall and understand
how your own programs work. In situations where any software just
doesn't operate the way you expect it to, Debugger is your key to
discovering the truth. After you are clear about what is happening,
you can choose to make any changes or additions. After each modifi­
cation, Debugger will show you the results.

This technique can be used without writing a complete program for
printing the variables. If you only wish to check the operation of the

timer, for example, you could use IBR EAKI to stop the program at the
point you wish to examine, and simply type: P R I NT T . Where more
than one variable is involved or when you want to understand all
aspects of a program, writing a complete Dynamic Debugger is well
worth the time required.

-- 227

Buzzwords
Many conventional words have special meaning when computers are
the subject being discussed or written about. This dictionary of
computer terms can help you understand some of these words and
help you use them effectively. Not all computer terms are included,
but the common terms used in this book are described below.

AR RAY - a numbered sequence of variables that can hold integers.

Buzzwords

BAS I C - a computer language designed to be easy to use and understand.
The beginner's all-purpose symbolic instruction code.

C HARACT E R - anything that will print in a single space on the screen,
including numbers, letters, punctuation, and graphics symbols.

C O M MAN D - a direction to the computer.

C O M MA N D M O D E - a condition that exists when the computer is
waiting for you to enter a command or a line number. The message
0 K appears on the screen whenever you are in command mode.

C O N D ITI O N - a comparison that can be true or false. Conditions
are tested and evaluated in I F statements.

D I M E N S I O N I N G - automatically sets aside space and defines
boundaries for an array.

G RAPH I C S C HARACT E R - a symbol used to create designs and
patterns on the screen.

I N ST R U CTI O N - a direction given to the computer. If a line number
is used before an instruction, the instruction becomes part of a
program when I ENTER I is pressed. If there is no line number, an
instruction is carried out immediately when I ENTER I is pressed.

I NT EG E R - a whole number, without any fractional part, in the range
of -3 2 7 6 8 to 3 2 7 6 7. Note: Do not use commas or periods with
numbers.

LETT E R - the characters from A to Z .

L I N E - anything you type on the keyboard. Pressing I ENTER I ends
a line.

L I N E N U M B E R - the number in front of an instruction which
indicates its position in a program.

MAC H I N E C O D E - a group of instructions , not in BASIC, which are
read directly by the computer chip. To write machine code instruc­
tions, you need an instruction set for the computer chip and special
programming techniques, using PO K E .
--- 229

230

Buzzwords (continued)

M E M O RY - where the computer stores numbers, strings, arrays,
instructions, complete programs, and whatever is currently being
displayed on the TV screen. These all use space in memory. With more
memory, your Color Computer will be able to hold and run longer
programs.

M E S SAG E - an informative note printed on the screen for the benefit
of the user of a program.

N U M B E R - the characters from 0 to 9, individually or combined.

P R O G RAM - a set of lines with line numbers. A program can be
entered from the keyboard or loaded from tape.

P U N C TUATI O N - the characters $: ? () - + * I = > < ; . .
S U B R O UTI N E - a section of a program ending with R ETU R N and
called by G O S U B .

VAL U E - the result that can be printed. The value of 1 0 is 1 0. The
value of 2 +3 is 5. The value of A is the number stored in the variable
A . The value of A $ is the character or characters stored in A $.

VAR IAB LE - a section in the computer's memory that holds informa­
tion. All variables have names such as A , A $, B O B , or X(1) .
Variables can easily be changed. Number variables each hold a
number. String variables hold one or more characters. Arrays hold
one or more number variables. Variable names may be of any length;
however, only the first two characters are significant with this
computer.

Index

Alarm clock, 76
Amling, Jim, ii
Area Calculator: Lesson 9, 55-59
Art and animation, 186
Arrays, 8 1 , 89-90, 141- 142
ASC(K$), 34
ASCII numbers, 96-97, 1 17, 139- 140, 156, 163 , 184
Autostart, 19
Auto average, 26
Auto repeat, 47
Average Calculator: Lesson 4, 23-27
Billboards and signs, 184
Branching, 49-52, 126- 127, 173- 179
BREAK, 4
Buzzwords, 229
Calculators, 55-59
C ar Calculator: Lesson 20, 173- 179
CHR$, 29, 32-34, 69-70
Cipher: Lesson 16 , 1 13- 122
CLS (clear screen), 19
Colon, 24, 73-74
COLOR, 67-69
Coloring Box: Lesson 1 1 , 67-71
Command mode, 9 , 122
Comparison (>. <. =) , 17- 18
Comparison (< >) , 73-75
Compounding interest, 61 -64
Coin Flipper: Lesson 2, 1 1 - 15
Counting Machine: Lesson 6, 37-43
D ata Processing, 89-98
Decision Maker: Lesson 8 , 49-52
Decisions (IF / THEN), 1 1 , 12
Debugging programs, 223
Dice simulation, 80
DIM (dimension), 8 1 , 89, 1 15 , 197
Distance calculator, 1 73
Division by zero, 7
DLY (delay), 49, 5 1 , 1 60 , 207-208
Double loops, 67-69
Dynamic Debugger: Lesson 30, 223-227
Dynamic sorting, 94-95
ENTER, 1
Error message, 1 , 7, 4 1
E xpressway: Lesson 5 , 29-34
FC ERROR, 4 1
Feedback, 215-216
Flash cards, 127
Flowchart, 10 , 16, 2 1 , 28, 35, 44, 48, 53, 60, 66, 72, 78, 88, 100- 102, 1 1 1 - 1 12, 123,
135-137, 151 - 154, 168- 1 7 1 , 18 1

Index

--� 231

232

Index (continued)

Formulas, 23, 55-59, 173- 175
FOR/ FOR, NEXT/NEXT (double loops), 67-69
FOR / NEXT, 23-26
FOR/ NEXT/ S TEP, 37-43
Game design, 1 13, 139, 146- 147, 155- 167
GOSUB, 157- 167
GOTO, 2
Graph, 83-87
Graphics characters, 184
Graphics: Lesson 2 1 , 183- 192
Guessing Game: Lesson 3, 17-20
Hangperson: Lesson 18, 139- 150
Help, i
Halt ! , 15
How It Works, ii
IF/THEN, 7, 1 1 - 14, 17
INKEY$, 34 , 49-50, 77, 1 17, 156- 157, 204-205
INPUT, 5-7, 19, 55-59, 144, 203-204
Inputs: Lesson 26, 209-213
Input module, 129- 130
Input note, 156
Input word, 141
Instruction, 1
INT (integer) , 41 , 6 1-65, 2 19-220
Interest Calculator: Lesson 10, 6 1-65
Introduction to Computing, 1 -4
JOYSTK(N), 29, 31 , 34
Kaleidoscope: Lesson 7, 45-47
LEN (length of a string) , 140
LET, ii
Line numbers, ii
LIST, 2, 3 , 52
Loop, 13, 23-26, 37, 42
Mathematician: Lesson 1, 5-9
Math Teacher: Lesson 17, 125- 134
Menus, 106, 177, 183
Menus: Lesson 23, 199-202
Messages, 7
MID (character in a string), 140
Multiple lines, 24, 73-74
Music and Sound Effects: Lesson 27, 215-218
Music notation, 161 - 162, 198
Music Teacher: Lesson 19, 155- 167
Musical instruments, 193
Nels on, Ted, 43
NEW, 4
Not equal (< >) , 73-75
0 and 0, i
ON/ GOTO, 49-50, 52
Parenthesis, 9
Pinball, ii
Player Piano, 193

POINT (B ,V), 29, 31 1

PRINT, 1-3, 20
PRINT @, 14, 49, 70-71 , 73-75, 82-86
PRINT#-2, 65
PRINT TAB, 29, 32, 33
Printer option, 65
Printing money ($) , 65
Printing tables, 6 1-63
Probability, 46
Probability: Lesson 13, 79-87
Program, 1 -2
Program Restarts: Lesson 24, 203-205
Prompts, 104- 105
Random numbers, 1 1 - 15 , 19-20, 49-51 , 79-87
READ /DATA, 148-150, 186, 188
REDO, 8
Report card, 133- 134, 221 -222
RETURN, 157- 167
Reverse video, i ,
Rounding off, 6 1-65; 103- 104, 175- 176
Rounding Off Numbers: Lesson 28, 219-220
RUN, 3
Scoreboards: Lesson 29, 221-222
Semicolon, 2, 14 , 32
SET(H,V,C), 45-47
Scientific notation, 8
SHAPE, 67-69
Skill level adjustment, 130- 131
Sorting: Lesson 14, 89-99

Index (continued)

SOUND, 25-26, 29, 32, 40, 47, 5 1 , 75, 87, 120, 144, 155- 167, 188, 193, 195-H)7,
207, 215-218
Spaces between letters and numbers, i
Space sounds, 42
Speed calculator, 175
STEP, 37
String manipulation, 139
Stop watch, 77
Subroutines, 157- 158
Tables, 6 1-63
Temperature Converter: Lesson 15, 103- 1 1 0
Time calculator, 174
Time delays, 73-77, 160, 188
Time Delays: Lesson 25, 207-208
Time Response Monitoring, 132- 134, 226
Time limit, 32
Time Machine: Lesson 12, 73-77
Timer, 76
Variables, 6, 12, 18, 223

233

I M PO R TA N T N OT I C E

A L L R A D IO S H A C K C O M PUTER P R O G RAMS A R E L IC E N S E D O N A N
"AS IS" BASIS W ITH O U T WAR R A NTY.

Rad io Shack s h a l l have no l i a b i l ity or responsi b i l i ty to custo m e r o r a n y
ot11 e r person o r ent i ty w i t h res pect to a n y l ia b i l i ty , l oss o r damage caused
o r al leged to be ca used d i rectly o r i nd i rectly by c o m p uter equ i p me n t o r
p rog rams sold by Rad i o Shac k , i n c l ud i ng b ut n o t l i m ited t o a n y i nte rrup­
ti o n of serv i c e , l oss of b usi ness or ant ic i pato ry prof its o r c o nseq uent ia l
damages res u l t i n g from the use o r operation of such com puter or
com puter p rog ra m s .
NOTE: Good d ata p rocess i n g p roced u re d i ctates that the user test t h e

prog ram , ru n and test sa m p l e sets o f d a t a , a n d run the syste m i n
para l l e l with the system p rev i o u s l y i n use for a period of t i m e
adeq uate to i n s u re t h a t res u l ts o f o pe rat i o n o f the c o m p u ter o r
p rog ra m a re sati sfactory.

RA D I O S HA C K S O FTWA R E L I C E N S E

A. Rad io Shack g rants to C USTOMER a non-exclusive, paid up license to
use on C U STO M E R ' S c o m p uter the Rad i o Shack c o m p u te r software
received . Tit le to the med i a on w h i ch the softwa re is recorded (cassette

and/o r d i s k) or sto red (R O M) is t ransfe rred to the C U STO M ER , b u t not

t it le to the software .

B . I n conside rat ion fo r t h i s l i cense, C USTO M E R s h a l l not re p ro d u ce
copies of Radio Shack software except to reproduce the number of copies
req u i red for use on C U STO M E R'S com p uter (if t h e software a l l ows a
bac k u p copy to be made) , and sha l l i nc l ude Rad i o Shack's copyri g h t
notice on a l l c o pies o f software rep rod uced i n w h o l e o r i n part .

C . C U STO M ER m a y rese l l Rad i o Shac k 's system a n d appl icat ions soft­

ware (m od ified or not , i n whole or in part) , p rovided C USTO M E R has
p u rch ased one copy of the software for eac h o n e resol d . The provis i ons
of t h i s software L ice nse (pa rag raphs A, B , a n d C) s h a l l a l so be a p p l icable
to th i rd parties p u rchasi ng such software from C U STO M E R .

RADI O SHACK !! A DIVISION OF TAN DY CORPO RATI ON

U.S.A.: FORT WORTH, TEXAS 761 02
CANADA: BAR R I E, ONTARIO L4M 4WS

AUSTRALIA

280-3 1 6 VICTORIA ROAD

RY DALM ERE, N.S.W. 21 1 6

TANDY CORPORATI ON
BELGIUM

PARC IN DUSTRIEL D E NANINNE

5 1 40 NANINNE

U .K.

BILSTON ROAD WEDNESBURY

WEST MI DLAN DS WS1 0 7JN

PR INTED I N U .S .A .

	Front Cover
	Copyrights
	Title Page
	Table of Contents
	How to Use Computer Learning Lab
	Section 1
	Introduction to Computing
	Lesson 1 : Mathematician
	Lesson 2: Coin Flipper
	Lesson 3: Guessing Game
	Lesson 4: Average Calculator
	Lesson 5: Expressway
	Lesson 6: Counting Machine
	Lesson 7: Kaleidoscope
	Lesson 8: Decision Maker
	Lesson 9: Area Calculator
	Lesson 10: Interest Calculator
	Lesson 11: Coloring Box
	Lesson 12: Time Machine

	Section 2
	Lesson 13: Probability
	Lesson 14: Sorting
	Lesson 15: Temperature Converter
	Lesson 16: Cipher
	Lesson 17: Math Teacher
	Lesson 18: Hangperson
	Lesson 19: Music Teacher
	Lesson 20: Car Calculator
	Lesson 21: Graphics
	Lesson 22: Player Piano

	Section 3
	Lesson 23: Menus
	Lesson 24: Program Restarts
	Lesson 25: Time Delays
	Lesson 26: Inputs
	Lesson 27: Music and Sound Effects
	Lesson 28: Rounding Off Numbers
	Lesson 29: Scoreboards
	Lesson 30: Dynamic Debugger

	Buzzwords
	Index
	Back Cover

