COMPUTER
LEARNING
LAB

D euT e
~ < CLS =

r 4=
Z

=

Computer Learning Lab Program:
© 1981 The Image Producers, Inc.
Licensed to Tandy Corporation
All Rights Reserved.

Computer Learning Lab Program Manual:
© 1981 The Image Producers, Inc.
Licensed to Tandy Corporation
All Rights Reserved.

It is illegal to reproduce this book or the software
used in these lessons for any purpose other than
personal convenience. You cannot resell, distribute
in any form, or conduct any commercial activity
using these materials without permission of the
publisher. Please direct requests, questions, or other
comments to The Image Producers, Inc., 615
Academy Dr., Northbrook, IL 60062.

No liability is assumed with respect to use of the
information herein.

Reproduction or use, without express written per-
mission from Tandy Corporation, of any portion of
this manual is prohibited. While reasonable efforts
have been taken in the preparation of this manual to
assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in
this manual, or from the use of the information
obtained herein.

Please refer to the Software License on the back cover
of this manual for limitations on use and reproduc-
tion of this Software package.

10987654321

Time Response Monitoring and TRM Programming
are registered trademarks of The Image Producers,
Inc.

Computer Learning Lab
for the
TRS-80 Color Computer

By Dick Ainsworth

A Self-Teaching System of
Software, Experiments, and
Programming Guides

Radie fhaek”®

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

Table of Contents

How to Use Computer Learning Lab
SECTION 1

The following introduction and Lessons 1-12
show how to enter programs and how the computer
uses special words to describe each step.

Introduction to Computing
Instruction: PRINT, GOTO
Line Number: ENTER
Program: RUN, LIST

1. Mathematiciancoviiiiineinnenenennns
Arithmetic: + — = [/ =
Keyboard: INPUT

2. Coin Flipper......ccoiiiiiieiiiiiieeenisssnnnnnns
Random Numbers: RND(X)
Decisions: IF/THEN

3. GuessSing Gameoeevviiiieiiiiinnneeenns
Comparison: MORE >, LESS <, EQUAL =

4. Average Calculator..............ccevvvvinnnnnn.
Program Loop: FOR/NEXT
Formulas

B EXPreSSway «isissartanscrsmsaimenssess cannsowani
Graphics: POINT (H,V), PRINT (TAB), CHR($)
Sound: SOUND(F,D)

Motion: JOYSTICK(N)

6. Counting Machineccoveiiiiinnne.
Counting: FOR/NEXT/STEP

7. KaleidOSCOPEecovviiiiiiiiininiinnreennscnnnnns
Graphics: SET (H,V,C)

8. Decision Makercoiiiiiiiiinnnnnns
Branching: ON/GOTO
Keyboard: INKEY$

9, Areg Caletlalon , .ss ;anne soms 55 ans s 5200 samws nams
Formulas, Special Calculators

10. Interest Calculatorccovvivnnnnnn.
Printing Tables, Rounding Off Numbers
Integers: INT(X)

11. Coloring BOXcoiiiiiiiiiiiiinnnnenncennnnns
Graphics: COLOR, SHAPE
Double loops: FOR/FOR, NEXT/NEXT

12. Time Machinecciiiiiiiiiiiiiiiiinnnn
Time Delay, Multiple Lines
Comparison: NOT EQUAL < >

SECTION 2
Lessons 13-22 show how your computer can be
programmed to create many different kinds of
games, educational software, music, and art.

13. Probabilityccocvevecivrnrrerscoosneessnsscins
Random Numbers, Probability Curves

14. SOTEINEG ... ouvovsuvssoasveranvaceassossosesswsssvus

Arrays, Data Processing Techniques

15. Temperature Converterccovvuvnn.
Formulas, Special Calculators

16 Ciphér..c..owsee.onsesssvsoonssssmesnaecnsenaassuse

Program and Game Design

17. Math Teacher.............civtiiiiiiinnnnsnncnns
Time Response Monitoring®

18. HanZpersOn ... v:::narss avsan nave « anoss s 56 « aas
String Manipulation, Game Design

19. Music Teacherccciiiiiiiiiiiiieenneeenns
Music Instruction, Game Design

20. Car Caleulabor «.:.ums auss.sasew oo 5500 sname o o
Branching, Special Calculators

21. GPraphiCscxsuxsavunnsarsxnvnversiovsansenas
Video Art, Graphics Characters

22. Player PiQNO .c.u.cveeiimsssnommannssamseeavss sans
Musical Instruments

SECTION 3
Lessons 23-30 illustrate programming guides
that can be copied and used to create many
kinds of software quickly and easily.

23. MENUSoviiiiiiiinnnnreeeeeessssssssssnnnnnnns
Program Titles and Starting Screens

24. Program Restarts.............cccoiiiiiiinnnnnnn
Program Endings with Automatic Restart

25. TimeDelays........cooiiiiiiiiiiiirnnnsssnnnnnns
Controlling Time Intervals

20, JEPRINE o s ocntrmuscioeans s ony ey oy oo e cmap's saiwsres
Using the Keyboard to Control Programs

27. Music and Sound Effects.......................
From Bach to BANG!

28. Rounding Off Numbers
Making the Digits Fit; Printing Dollars and Sense

29. Scoreboards i iiiiiiiiiiiiiiiiiieaes

Who Won?

30. Dynamic Debuggerccvvenennn
Finding and Fixing Problems

BUzZZWOrdSoiiiiii it iitiiittetteereetenorencnannns

How to Use Computer Learning Lab
B B e e e T T T e T S e e Tl

How to Use Computer Learning Lab

This interactive teaching system is not like an ordinary book or class.
The text and tape software are designed specifically for use with all
versions of the TRS-80 Color Computer, your television, and a standard
audio cassette recorder. The programs you enter from the tapes or
from the keyboard appear on the TV and are the illustrations or
pictures for the text.

SECTION 1 contains an introduction to your computer and 12 self-
correcting lessons that show you how BASIC words such as PRINT
and GOTO are used.

SECTION 2 shows how your computer can be programmed to create
games, solve formulas, play music, sort information, and teach. Each
lesson contains a software example and experiments to help you
design and write your own programs.

SECTION 3 includes programming guides and other tools that make
writing programs easier, faster, and more fun.

Look Here for Help

From time to time you may run into a situation you don’t understand or
a problem you don’t know how to solve. Check this section now so

that you will know what help is here. If you run into difficulty, check
this section again and see if you can find the answer. Here are some
typical problems and their solutions:

Reverse Video simply means that you're typing with letters in reverse —
light letters on a dark background. If this happens, the computer

won’t understand anything you type. To change from normal to

reverse letters (or to change back again),press and hold down the
key while you type a zero ([@0).

O and 0 may look alike to you, but the letter O and the number zero are very
different to your computer. If an instruction won’t work, check for an

O where a 0 belongs. Also, be careful not to reverse the number 1 and

the letter I.

Spaces between letters and numbers are not critical in most instances
with your Color Computer. You can enter PRINT 2 + 3 or enter
PRINT2+3 and the computer will answer: 5. We have used spaces in
front of and behind all command words in the examples. This makes
programs easier to read.

Pl

How to Use Computer Learning Lab (continued)
“

Line Numbers must be in the correct numerical sequence for your
program to work. You can use 10,20,300r 1,2, 3,0r 100,172,203 for
your line numbers. We write programs with line numbers 10, 20, 30,
etc. so that there will be room for additional instructions. This way,
you could add more instructions numbered 14,15, 17 between lines 10
and 20.

Don’t Use LET in your programs. If you are familiar with other
versions of BASIC, you might try using a statement such as: LET A=5.
With COLOR BASIC, the word LET is not necessary and should not

be used. Simply use: A=5.

How It Works

Sections with this title occur through the book. Please include or refer to
these sections whenever you wish to learn more or understand the
material in greater detail.

If you are interested in how the Learning Lab detects typing errors, for
example, you might want to know that special software is recorded on
each Section 1 cassette, along with the program. When you load these
tapes, the computer reads the computer program used in that lesson
and stores it in memory. After each instruction is typed, and the
[ENTER] key is pressed, the computer compares the input from the
keyboard with the correct instruction. If you have made a typing
error that would prevent the program from running correctly, the
computer shows you the mistake. After a correct program has been
typed, this special software “disappears’ and you can run, list, or
modify the lesson.

The Section 1 tapes containing this monitoring feature were
programmed by Jim Amling in assembly language. He also assisted
in creating lesson programs specifically designed to be clear and easy
to understand. Dick and Jim have worked as a design/programming
team on many other projects, including PINBALL, an Instant-Load
Program Pack for the TRS-80 Color Computer.

ACKNOWLEDGEMENT

Special thanks to Al, Bill, Christal, Copper, Etta, Jan, Jim, Leanne,
Marty, Natsuko, Paula, Phyllis, Sat Tara, and Tom.

o
[

Introduction to Computing

Introduction to Computing

This introduction will show you how to communicate with your computer
by typing instructions on the keyboard. You will also create a short
computer program by entering instructions into the computer’s

memory. When you run your program, the computer will follow these
instructions exactly.

Experiment 1: HELLO

If your computer, TV, and cassette tape recorder are not already connected
and working, follow your instruction manual for details. When you

turn on your computer and TV, you will see a small square changing
color (called the cursor) and this message:

COLOR BASIC
(C) 1980 TANDY
OK

The important things to notice are the OK and the cursor. They tell you
that the computer is ready and waiting for your next instruction. Now
type this message on the keyboard:

HELLO

Press the key. When you press [ENTER], the computer will respond
by printing 7SN ERROR on the screen. This is an error message

which tells you the computer doesn’t know what HELLO means.

There are only a few words in the computer’s vocabulary and HELLO

is not one of them.

Now type this instruction, using PRINT — one of the words in your
computer’s vocabulary. To type quotation marks, press while
you type [2]. If you make a typing error, press the left arrow key ([&))
to back up and make the correction.

PRINT "HELLO"

Now press |[ENTER|. This time the computer does what you requested and
prints the word HELLO on the screen. PRINT is one of the words in
Color Basic, your computer’s programming language.

Experiment 2: Write a Program

A computer program is a numbered list of instructions. Each of these
instructions begins with a number and is similar to the instructions
you just entered. Try this example:

10 PRINT "HELLO"

Introduction to Computing (continued)

—

When you press |[ENTER|, the computer stores your instruction in its
memory and moves the cursor down for your next instruction. Now
enter this second instruction:

20 GOTO 10

When you press [ENTER], the computer adds the second instruction to the
program stored in the computer memory. Type [ESIA) and press

the [ENTER] key to see the complete program listed on the screen.

Your screen should show:

10 PRINT “"HELLO"
20 GOTO 10

If your screen doesn’t match the example, type your instructions again.

The word GOTO is another word or command in your computer’s
vocabulary. It is always written as one word and tells the computer
to go to a particular line number to continue running the program.

Here’s what your program will do: The computer will read your
instructions in numerical order. When it reads instruction number 10,
it will print HELLO on the screen. Then it will read instruction
number 20 and again go back to instruction number 10. This will
repeat over and over as the computer prints a constant stream of
HELLO on the left side of the screen. When you're ready to run your
program, type [E]IE][E and press [ENTER]. After you’'ve run the
program, press the red key to stop it.

Experiment 3: HELLOHELLOHELLOHELLO

List your program again by typing [MOI[SI[A and pressing [ENTER|. Your
screen should show:

10 PRINT "HELLO"
20 GOTO 10

You can change an instruction in a program by entering another
instruction with the same line number. This erases the old instruction,
replacing it with the new one. Now type a new instruction for Line 10,
adding a semi-colon at the end, like this:

10 PRINT "HELLO™;

When you press |[ENTER|, this new instruction will replace the old Line 10.
You will see the effect of this change when you run your program.
Later, you will learn many other ways to use PRINT in your programs.

Introduction to Computing (continued)

Check your new program by listing it again. Type [I][SI and
press |[ENTER|. Your program will now look like this:

10 PRINT "HELLO";
20 GOTO 10

Run your new program by typing [RIUIN] and pressing [ENTER]. With the
semicolon added, your computer will print HELLO over and over

again on the same line. When the printing gets to the right edge of the
screen, it will move down to the next line automatically. You

probably can’t see HELLO because it's moving too fast.

You can stop the printing on the screen at any time by pressing
[SHIFT] and the key. Try this now to stop the program and see
what is being printed. Notice that there is no OK or cursor on the
screen. The program has only paused, and you can’t enter new
instructions at this time. Now press any other key on the keyboard
to continue printing.

Stop the program by pressing the BREAK| key. The blinking cursor
and OK are back again, and you can now enter new instructions.

Experiment 4: HELLO NAME

If you don’t see the cursor and OK, press [BREAK] to stop your program.
Now list it again by typing [LI[1][S][T] and pressing [ENTER]. Your

screen will show:

10 PRINT "HELLO";
20 GOTO 10

This time you will add a new instruction to your program between Lines
10 and 20. Line numbers such as 10, 20, and 30 are often used because
this leaves room between these lines to add new instructions.

You can use an added instruction to print any name you like. Notice
that I have used a space before and after the name and that there is a
semicolon at the end. This keeps all the letters from running together.
Now think of someone you would like to say hello to and put their
name in a print instruction, like this:

15 PRINT “ LEANNE ~
Now type [LI[T][SI[T] and press again. Your screen should show:
10 PRINT "HELLO™;

15 PRINT “ LEANNE ;
20 GOTO 10

Introduction to Computing (continued)

Now the computer will print HELLO, leave a space, print the name you've
picked, leave a space, and repeat as before. Try it by typing [R][U][N]

and pressing [ENTER]. You can pause by pressing and [@, and
then continue by pressing any key. You can also stop your program

by pressing [BREAK]|.

Type [ﬂ]@ and press . This removes your program from the
computer’s memory. Now experiment on your own by writing a short
program, using PRINT and GOTO instructions. You can put anything
you like inside the quotation marks and print it on the screen. Here’s
an example of an interesting pattern:

10 PRINT "#—————— 2
20 GOTO 10

Try printing other patterns with your program by changing Line 10 or by
adding more lines. Use [L][T][SI[T] to check your program and see any
changes, then use [RJ[UJ[N] and see what your program does. When
you’'ve finished experimenting, press to stop and go to Lesson 1.

Lesson 1: Mathematician

—

Lesson 1: Mathematician

Arithmetic: + — « / =
Keyboard: INPUT

In this lesson you will use the calculating power of your computer to
solve arithmetic problems. You will begin by typing in a short
program that adds, subtracts, multiplies, and divides two numbers.

Begin by loading Computer Learning Lab and Lesson 1 from the cassette
by following this procedure:

1. Place the cassette in the recorder, rewind, and press PLAY.

2. Type @@@M and press |[ENTER|. When the program starts
loading you will see a blinking F and the word: COLORMON.

3. When you see OK and the color cursor, press the STOP button on the
tape, then type [EJX][E][C] and press [ENTER].

4. Follow the directions on the title frame for Lesson 1.

Enter Mathematician

Enter this program into your computer by typing these eight instructions
on your keyboard. Remember to press the key after you finish
typing each line. If you make a typing error, you can back up to

correct it by pressing the left arrow key ([€]). When you press the

key, Computer Learning Lab will automatically check the line
you've typed and show you any errors. To correct a line, just type it

over again and press [ENTER|.
If you're in a hurry you can type [AUITIQ] and press |[ENTER]|, and

Learning Lab will enter the program for you.

10 INPUT "A"A

20 INPUT "B";B

30 PRINT "A+B=";A+B

40 PRINT "A-B=";A-B

50 PRINT "A=B=";A+B

60 PRINT "A/B=";A/B

70 INPUT "GO AGAIN (Y.N)";K$
80 IF K$="Y" GOTO 10

Lesson 1: Mathematician (continued)
A R S e e o e e e e R

Run Mathematician

After you've entered all eight lines of your program into the computer,
type [RI[UI[N] and press [ENTER]. The computer will print A? on the
screen. Type [5] and press the key. The program will ask for
the second number by printing B?. Type [2] and press again.

The computer will print four simple arithmetic problems and their
answers on the screen, using 5 for the letter A and 2 for the letter B.
Notice that the computer uses an asterisk (*) for the multiplication
sign and a slash (/) to show division.

A+B=7
A—B=3
A=B=10
A/B=2.5

After the problems and answers are printed on the screen, the program
will ask if you want to go again. Press and then press [ENTER] to
signal yes.

When the computer asks for number A, type [2][5] and press [ENTER]. Then
type (3][@] for B and press |[ENTER| again. The computer will print the
answers, as before.

Continue entering pairs of numbers and seeing the results. You can use
numbers with decimals such as 21.5 and 13.03, if you like. If you type

a zero for B, the computer will signal an error, as explained in
Experiment 1.

How Mathematician Works

This section goes into more detail about your computer and explains what
is happening when you run the program. You can continue with this
lesson at this time, or go on to Lesson 2 and see how random numbers

are used in programs.

To learn more about this program, stop it and list the instructions on
the screen. After you've finished calculating numbers, type [N] and
press [ENTER] to signal no when the question GO AGAIN (Y,N)?
appears. This will stop the program. Now type IF]E]E] and press
to list the program on the screen.

The flowchart diagram on page 10 shows what’s happening when your
program runs. Follow the chart and see if it helps you understand
how this program works. The program uses the letters A and B to
add, subtract, multiply, and divide two numbers. When you enter two
numbers from the keyboard, the computer sets these letters (called
variables) equal to the values you type.

Lesson 1: Mathematician (continued)

Next, the computer does the arithmetic and prints the answers on the
screen. You see the numbers you typed added, subtracted, multiplied,
and divided.

The question GO AGAIN (Y,N)? gives you an opportunity to repeat the
program if you choose. This decision point in the program is shown
by a diamond shaped box in the flowchart. If you type the letter [Y], the
program goes to Line 10 and repeats. If you type [N], the program
stops.

If you are interested in writing your own programs, follow the line-by-
line description to see how each of the instructions works together in
creating the program you’ve been using.

LINE 10 prints A? on the screen. The letter A is set equal to the number you
type on the keyboard.

LINE 20 prints B? on the screen and sets B equal to the number you
type.

LINE 30 prints A+B= and then prints the value of A plus B.
LINE 40 prints A—B= and the value of A minus B.
LINE 50 prints A+=B= and the value of A times B.

LINE 60 prints A/B= and the value of A divided by B. Notice how the
computer uses the symbols +, —, , and / for addition, subtraction,
multiplication, and division.

LINE 70 prints a message on the screen so that you can indicate whether
or not you wish to try another problem. The variable K$ is set equal
to the letter you type on the keyboard.

LINE 80 sends the computer back to Line 10 if the letter you type is a [Y].
If you type any other answer, the program stops.

Experiment 1: Computer Messages

The computer is designed to print a message if it cannot follow your
instructions. These messages are called Error Codes and they can be
very helpful in understanding what might be wrong. In this program
it’s possible to make an error by entering a zero for letter B. When the
computer tries to divide by zero, it will print an error message
because division by zero won’t work, even with a computer.

Lesson 1: Mathematician (continued)

Run your program again by typing [EHEHE] and pressing [ENTER|.
Type any number for A and press the [ENTER| key. Enter a zero for

B by typing (0] and pressing [ENTER|. When the computer gets to
Line 60 and tries to divide by zero, it will stop and print: ?/0 ERROR
IN 60. This means that you tried to divide by zero in Line 60.

Now try a different mistake, and get a different error message. Run
your program again by typing E][EHE] and pressing [ENTER], as
before. This time, enter a letter instead of a number when the
computer asks: NUMBER A=?. The message ?REDO means do it
again. Now type a number, press [ENTER].

Experiment 2: Scientific Notation

For very large or very small numbers, your computer uses a special
method for showing how many zeros there are. Run your program
again and try these numbers for A and B to see an example:

Number A= 500000
Number B= 300000

The correct answer for 500000 times 300000 is 150000000000. The computer
prints this number and all large numbers in Scientific Notation, like
this: 1.5E+11.

Actually, the number 150000000000 and the number 1.5E+11 are equal to
the same value, even if they are written differently. If you start with
the number 1.5 and move the decimal point 11 spaces to the right, you
will get 150000000000.

To convert from scientific notation to regular numbers, just write the
number to the left of the letter E, then move the decimal point as many
times as the number on the right. In this example, the number to the
left of the E is 1.5 and the decimal point is moved eleven places to

the right (+11) to create: 150000000000.

Try this example:
NUMBER A= 5

NUMBER B= 4000

This time the division created a small number and the computer printed it
in scientific notation. The answer for 5/4000 is 0.00125 and the

computer printed this number as 1.25E—-03. If you write 1.25 and move the
decimal point three places to the left (-03), you will get the same

answer: 0.00125.

Lesson 1: Mathematician (continued)

Experiment 3: Command Mode Arithmetic

You don’t have to write a program to do arithmetic on your computer.
If OK is on the screen with the cursor (colored square) flashing, you
are in Command Mode. You can type instructions (RUN, LIST,

PRINT), and the computer will do as you ask.

If you don’t have the computer in command mode with OK on the screen,
press the red [BREAK] key in the upper right corner to stop your
program.

Now print the answers to some arithmetic problems with these

instructions. Just type these instructions and press |[ENTER| after each
one.

PRINT 2+3
PRINT 2«5

PRINT 156+3+6.5

Experiment 4: Multiply or Divide, then Add or Subtract

Computers always do multiplication and division first, then addition or
subtraction. Look at this problem and figure out the answer, then let
the computer print the result by typing the instruction and pressing

[ENTER].
PRINT 9+6/3

Did you get the same answer as the computer? If you remembered the rule
and divided before you added, you would have said: 9 plus 6 divided by

3 is the same as 9 plus 2, or 11. Get the rule backwards and your

answer would have been 5.

If you remember that the computer does arithmetic in this order, you
can’t go wrong:

Multiply
Divide
Add
Subtract

Programmers sometimes keep this straight by remembering: My Dear
Aunt Sally.

You can change the order in which the arithmetic is performed by using
parentheses. All operations inside the parentheses are done first. In this
example, the addition inside the parentheses is done, then the number

is divided. The computer adds 9 and 6, then divides 15 by 3.

PRINT (9+6)/ 3

10

Lesson 1: Mathematician (continued)

MATHEMATICIAN

LESSON 1

KEYBOARD

KEYBOARD

10
KEYBOARD INiUT 2

30

50
60

RUN

PRINT
K$

NUMBER A=?

NUMBER B=7?

GO AGAIN
(Y,N)?

Lesson 2: Coin Flipper

Lesson 2: Coin Flipper
Random Numbers: RND(X)

Decisions: IF/THEN

In this lesson you will see how your computer picks numbers by chance
and how it makes decisions. You will use both of these functions
many times in writing programs.

Random numbers are very useful whenever you're designing a game
or creating a pattern and want the results to be different each time the

program runs. Coin Flipper shows how the computer can simulate
flipping a coin by picking heads or tails by chance.

The ability to make decisions is one of the main advantages that
computers have over other types of machines. In this example the
computer will decide what results to print on the screen after the coin
has been tossed electronically.

Load Computer Learning Lab and Lesson 2 from the cassette with
@@@M and E]IZ]E] When you see the program title, press
ENTER| to begin the lesson.

To program your computer to simulate flipping a coin, enter these eight
instructions: If you would rather have Computer Learning Lab enter

the program for you, type [AJ[UI[T][0] and press[ENTER].
10 H=0
20 T=0
30 C=RND(2)
40 IF C=1 THEN H=H+1
50 IF C=2 THEN T=T+1
60 PRINT “"HEADS:";H,
70 PRINT “TAILS:";T

80 GOTO 30

Run Coin Flipper

To run this program, type [RJ[UI[N] and press the [ENTER] key. The
computer will print a column for HEADS and a column for TAILS
with their current totals. There isn’t much for you to do but watch the

11

Lesson 2: Coin Flipper (continued)
—I—

scores add up. See whether heads or tails comes up more often. Then
press the |IBREAK| key to stop the program.

Run the program again and see if heads or tails comes up more often. If
you run this program many times, or just let it run for a long time, the
average number of heads and tails will be about the same.

How Coin Flipper Works

After you've seen enough, stop the program with the |IBREAK| key. Type
E][S] and press |[ENTER| to list the program on the screen.

The flowchart diagram on page 16 will help you see what the computer
is doing when this program runs. When you first run the program, the
computer sets both heads and tails to zero. Then the computer picks

a random number that’s either a one or a two. If it’s one, the total
number of heads is increased. If it’s two, the total number of tails is
increased. The score is printed on the screen, showing the total
number of heads and tails.

The program repeats and picks another random number, increases the
total, and prints the score again. Each time the score is printed, the
data on the screen moves up one line. This program loops or repeats
over and over again until you stop it.

Each line in the program is described below to show how these
instructions work together to simulate flipping a coin.

LINE 10 sets the variable H to zero. This letter is used to store the total
number of heads. We could use any letter we wish, however H is a logical
choice.

LINE 20 sets the variable T to zero. This letter stores the total number of
tails.

LINE 30 creates a random number that's either a one or a two. The
variable C is set equal to the number that the computer picks. This
variable keeps track of the coin because we are using one for heads
and two for tails.

LINE 40 makes the first decision: If C equals one, then the computer
increases H, the total number of heads, by one. If C does not equal one,
Line 40 is ignored.

LINE 50 makes the second decision and increases T if the variable C equals
two. If C is not two, this instruction is ignored by the computer.

LINE 60 prints the first half of the scoreboard. The word "HEADS:"” is
printed, followed by the total number of times that heads has come up.

12 —

Lesson 2: Coin Flipper (continued)

—

The computer prints the letters inside the quotation marks, then prints
the value of H.

LINE 70 prints the second half of the score with the word “TAILS:” and the
value of T. After this line is printed, the computer automatically

moves the data on the screen up one line. When the program runs, the
numbers appear to move up the screen while the names do not change
position.

LINE 80 creates a “program loop” by sending the computer back to Line 30
to pick a new random number for C.

Experiment 1: Change the Loop

Notice that the program loop in Line 80 sends the computer back to Line 30
for another random number. What would happen if the program looped
back to the beginning? It’s easy to change Line 80 and find out. Type

this new instruction for Line 80. When you press , this line
replaces the original:

80 GOTO 10

Now type m@ and press [ENTER]| to see if the new program matches
this example:

10 H=0

20T=0

30 C=RND(2)

40 IF C=1 THEN H=H+1
50 IF C=2 THEN T=T+1
60 PRINT “"HEADS:";H,
70 PRINT “TAILS:";T
80 GOTO 10

The Computer Learning Lab only monitors your typing while you enter
the original program. If you make an error while trying one of these
experiments, just type your instruction again, and list your program

to check it.

Now run your program and see the change. The program now goes back
to Line 10 and sets H and T equal to zero each time the program loops.
Since the totals always start at zero, the values for H and T are never
larger than one.

If you prefer the original version of the program, change Line 80 back
again. Stop the program with |BREAK]|, type a Line 80 exactly the way that
it was originally, and press |[ENTER|to replace the instruction.

13

Lesson 2: Coin Flipper (continued)

—
|

| .
Experiment 2: Scoreboard

The original program prints the totals on the bottom line of the screen.
This causes the data to scroll or move up the screen each time the
program loops. You can also print data anywhere else you like by
using the PRINT @ command.

Type carefully because Learning Lab is no longer monitoring your
input to the computer. Add the PRINT @ instruction to your program
and print the totals over and over again on the line that’s next to the
bottom of the screen.

55 PRINT @447

When you press |[ENTER|, this line is added to your program. Now type
[LJD[SI[T] and press [ENTER] to see your new program. If your added

instruction doesn’t match, just type it in again. Your screen should
show:

10H=0

20T=0

30 C=RND(2)

40 IF C=1 THEN H=H+1
50IF C=2 THEN T=T+1
55 PRINT @447

60 PRINT "HEADS:";H,

70 PRINT "TAILS:";T

80 GOTO 30

Now run this version and see a scoreboard that doesn’t move. Line 55
starts the printing near the bottom of the screen each time, so the
printing doesn’t scroll. You can use the PRINT @ command to print
at other locations by changing the number 44 7.

Experiment 3: Random Numbers

In this experiment you will see how the random number generator works.
Stop your program with the [BREAK| key. Now type NI[EIM and press

[ENTER]. This clears your old program from the computer’s memory.
Now enter this new program. Type carefully and press [ENTER| after each
instruction. Don’t forget the semicolon ([z]) at the end of the first
instruction.

10 PRINT RND (3);

20 GOTO 10

14

Lesson 2: Coin Flipper (continued)
N s g e R e e e e e e e S e e e e R e e e T T e e

Now list and check your program. When you run this program it will pick
random numbers between one and three and print them on the screen.

Run it now and see the result. You should see the screen fill with the
numbers 1, 2,and 3.

Press to stop your program. Type [LJ[TJ[SI[T] and press
to see the program on the screen. Now change Line 10 again and
replace the number 3 with some other number. When you run the new
program, the computer will print random numbers between one and

the number you have selected. Pick any number you like, and see

what happens.

If you select the number zero, the random number generator will pick
numbers between zero and one. Try this program and notice that all
the numbers are between zero and one. If you leave off the semicolon
the numbers will be printed on separate lines.

10 PRINT RND(O)

20 GOTO 10

Experiment 4: Halt!

With the last program running, press and hold [SHIFT| while you press
the [@ key. This stops the program. Press any key to start it again.

There’s no particular reason why the @ key was chosen for this feature.
If you can remember what it does, this trick makes it easy to stop a
program or a listing and see what’s going on without having to use

the key. One word of caution. If you use the Halt! feature,

you must press a key and start the program again before the computer
will respond to any other commands.

15

16

Lesson 2: Coin Flipper (continued)

COIN FLIPPER
LESSON 2

10 H=0
20 T=0
PICK C=1
30 OR C=2
5 INCREASE
A
YES HEADS
TOTAL
NO
50
INCREASE
c=2 \YES TAILS
? TOTAL
NO
60 PRINT
7 THE HEADS: 3 TAILS: 2
SCORE
80 REPEAT

Lesson 3: Guessing Game

Lesson 3: Guessing Game

Comparison: > More Than
< Less Than
= Equal

This simple program lets you play a game with the computer. The rules
are simple. When the computer picks a number, you try to guess what
it is. If you guess wrong, the computer will give you a hint.

Load Computer Learning Lab and Lesson 3 from the cassette with

[CLOJAlDIM and [E]JX][E][C]. Press [ENTER] when you see the title

frame for this lesson, then enter these seven instructions.

In this program, Line 20 is too long to fit on the screen in a single line.
The last few characters will move down to the next line automatically.
So don't press |[ENTER] until you’ve finished typing the instruction.

Now type these instructions carefully, and press [ENTER| after each one.
If you're in a hurry, you can type [AJUIT[A] and press [ENTER| and

Computer Learning Lab will enter the program for you.
10 X=RND(10)
20 INPUT “"GUESS A NUMBER (1-10)".G
30 IF G=X GOTO 70
40 IF G>X THEN PRINT “LESS”
50 IF G<X THEN PRINT "MORE"
60 GOTO 20

70 PRINT G: "IS RIGHT!"

Run Guessing Game

Type [RI[UIN] and press to run the program. The computer will
pick a number from one to ten. Type your guess and press [ENTER]

If you're right, the computer prints the number you guessed

and the words IS RIGHT! Guess too high, and the computer prints
LESS; guess too low, it prints MORE.

After you've guessed the answer, run the program again. Each time the
program runs, there’s a new number for you to try to guess. Plan your
strategy so that you can get the answer in the smallest number of
guesses.

17

18

Lesson 3: Guessing Game (continued)

How Guessing Game Works

Stop the program by guessing the right answer or by pressing [BREAK].
Now type [LJ[1][S](T] and press to see the instructions on the
screen. Compare these instructions with the flowchart diagram on
page 21 and see what the computer is doing when the program runs.

When you first run the program, the computer picks a random number
from one to ten. The variable X is set equal to this number. We

could use any letter to store the computer’s number, and X is as good
as any.

Now it’s your turn. The computer prints: GUESS A NUMBER (1-10)
and waits for your input. The number you type is stored in G (for
Guess). If your guess is correct, the number is printed with the words:
IS RIGHT! Get the answer wrong, and you’ll get a hint before the
program loops back for another input.

Notice that the program loops until G=X then it stops. The only way
to end this program — other than with the [BREAK] key — is to guess
the right number.

Here’s what each instruction does:

LINE 10 sets the variable X equal to a random number from one
to ten.

LINE 20 inputs a number for G and prints GUESS A NUMBER (1-10).
When you type a number and press [ENTER], the computer sets G equal
to the number you type.

LINE 30 sends the program to Line 70 if you're correct because G equals X.

LINE 40 prints the message LESS if your guess is too high because G is
greater than X(G>X).

LINE 50 prints MORE if you're too low because G is less than X(G<X).

LINE 60 sends the program back to Line 20. If you guess too high or too
low, this instruction takes the computer back for another keyboard
input.

LINE 70 is for winners only. This instruction prints the number you've
guessed and the words IS RIGHT! when you finally get it.

There are several ways you can modify or improve this program. Start
by repeating the next problem automatically and then add some more
features.

Lesson 3: Guessing Game (continued)
e e e

Experiment 1: Autostart

You can add a decision at the end so that you won’t have to type [RIUIN]
each time you wish to repeat the game. These two instructions will
print a message and give you the option to start again. Type these

new instructions carefully and press after each one:

80 INPUT "TRY AGAIN?(Y,N)";As
90 IF A$="Y" GOTO 10

Type [C][T][S][T] and press [ENTER]to see the modified program on the
screen. Check the added lines; if there are any errors, just enter them

again. Now type [R][U][N] and press [ENTER]to run your new program.
With these two lines your program will cycle automatically. When

you see the message on the screen, type and press [ENTER|to go
again.

Experiment 2: Clear Screen

Another nice feature is to clear the screen each time the program starts.
The clear screen command (@[S]) will do the trick. This instruction
can be added between Lines 10 and 20, like this:

16 CILS

Now run your program again and see if you like this addition.

Experiment 3: Change the Odds

Now that you're getting pretty good at guessing the correct number, let’s
make the game a little more challenging. You can make Guessing
Game as difficult as you choose by increasing the range of numbers
used for picking the computer’s random number.

The random function in Line 10 can be modified to select a number
between one and fifty with this change:

10 X=RND(50)
Before you try this new program, it’s a good idea to also change the
message in Line 20 so that you will know what range to guess, like
this:

20 INPUT "GUESS A NUMBER (1-50)";G

The computer won’t be affected by your message and the program will
work no matter what the words inside the quotation marks are. Notice

19

Lesson 3: Guessing Game (continued)

e e e B e B A ey s e e S e e e i e e R e e

that the possible inputs are enclosed in parentheses in Line 20 (1-50)
and in Line 80 (Y,N). This tells the user that a range of numbers from
one to 50 can be used and that Y or N is expected as the answer to
TRY AGAIN?

Experiment 4: Select the Difficulty

If you would like to be able to select the game’s difficulty, you can add
that feature with these modifications:

10 INPUT "DIFFICULTY (10-100)":D
17 X=RND(D)
19 PRINT "GUESS A NUMBER BETWEEN 1 AND";D;

20 INPUT G

Here’s how your complete program will look with all the changes we’ve
suggested:

10 INPUT "DIFFICULTY (10-100)":D
1% CLS

17 X=RND(D)

19 PRINT "GUESS A NUMBER BETWEEN 1 AND";D;
20 INPUT G

30 IF G=X GOTO 70

40 IF G>X THEN PRINT “"LESS”

50 IF GKX THEN PRINT "MORE"
60 GOTO 20

70 PRINT G; “IS RIGHT!”

80 INPUT "TRY AGAIN (Y.N)"; As
90 IF As="Y" GOTO 10

The print statement in Line 19 is necessary because you want to print a
custom message to let the user know what the range is.

In these experiments you have taken a short, simple program and added
several features. This is a good way to develop a program. It’s often
easier to get the central idea working, then add refinements.

20

Lesson 3: Guessing Game (continued)

GUESSING
GAME
LESSON 3

X EQUALS
10 | COMPUTER’S

GUESS
R

GUESS A NUMBER
(1-10)

20 INPUT
KEYBOARD | G e

SCORE |=---1 5 IS RIGHT
HINT f=----A MORE
50
G<X \YES HINT p---- . LESS
?

NO

60 REPEAT

Lesson 4: Average Calculator
e e e N B e e o e e e T, e e

Lesson 4: Average Calculator
Program loop: FOR/NEXT

Formulas

If you ever have to average a group of numbers, this program can be a
big help. Just tell the computer how many numbers you have, enter
each one, and get the average automatically. The key feature of this
program is its ability to loop or repeat for each input you enter.

Load Computer Learning Lab and Lesson 4 from the cassette with

[CL][OAlDIM and [E]X][E]IC]. Press when you see the title
frame for this lesson, then enter these ten instructions. If you make

a mistake, the lab will show you exactly what to correct. If you would
rather enter the program automatically, type [AIUITIQ] and press

[ENTER].
10 CLS:T=0
20 PRINT “. .. THE AVERAGE CALCULATOR . . ."
30 INPUT "HOW MANY NUMBERS"; X
40 FOR L=1TO X
50 PRINT "NUMBER";L;
60 INPUT “VALUE"Y
70 T=T+Y
80 NEXT L
90 A=T/X

100 PRINT "THE AVERAGE IS™;A

Run Average Calculator

After you've entered the program, type [EIE][E and press to
begin. Pick a small number, like [EI and then press . The
program will request a value for the first number to be averaged.
Type a value and press again. Continue until you’ve entered
a value for each of the numbers you wish to average together.

When you’ve finished, the program will print the average of all the
numbers you've entered. You can use decimals and even negative
numbers in computing the average. Compute several averages. Then
type [LJT[SI[T] and press to see the complete program on the
screen.

— . 23

Lesson 4: Average Calculator (continued)

_

How Average Calculator Works

The important feature to notice is the program loop that repeats for each
number you input. If you wish to average five numbers, for example,
this loop cycles five times.

Each time the program loops it will request a number and wait for your
input. Then the value is added to the total. If there are more numbers,
the loop repeats. When the loop has cycled for the number of times

you requested, the program continues with the next instruction and
prints the result.

The FOR statement in Line 40 and the NEXT statement in Line 80 create
the loop. All instructions between these lines are repeated for each
new number to be averaged. The variable X is used to decide how
many times the loop repeats.

LINE 10 is actually two instructions, separated by a colon. This is the
same as:

10 CLS
11 T7=0

You can put several instructions on a line, if you wish. Since both of
these are used to initialize or start the program, they’re typed on the
same line for convenience.

LINE 20 adds a title to the program. The computer doesn’t know or care
what is printed inside the quotation marks, but titles make things look
neat and orderly on the screen.

LINE 30 prints a message and sets the variable X equal to the number you
type. This variable is used in the FOR/NEXT loop (Line 40), so the
loop will stop when all numbers have been entered.

LINE 40 combines with Line 80 to form the loop. The variable L keeps
track of how many times the loop has run. On the first pass, L is set
equal to one. On each successive pass, L is increased by one. When

L is larger than X, the loop stops and the program goes on to Line 80.

LINE 50 prints NUMBER and the value of L. This tells you which number
you are entering.

LINE 60 sets the variable Y equal to the number you type.
LINE 70 adds the value of Y to the total, T. In this way, the numbers you

enter are added together each time the loop circulates. After you've
typed in all the values for Y, their total will be stored in T.

24

Lesson 4: Average Calculator (continued)
R D T R S B e e e T T T T

LINE 80 completes the loop that was started in Line 40. When the
computer reads NEXT L, it checks to see if L is greater than X in
Line 40. If not, the L is increased by one and the program returns to
Line 40. If L is greater than X, the loop is finished and the computer
goes to the next line in the program.

LINE 90 computes the average. Remember that T is the total of all
numbers entered and X is the number of terms.

Experiment 1: FOR/NEXT

Clear the program from your computer by typing [N]J[E]W and pressing
[ENTER]. Now enter this program. Type each instruction carefully
because Learning Lab is no longer monitoring your input and telling
you about any typing errors.

10 FOR Q=1TO 10
20 PRINT Q

30 NEXT Q

List your program and check it. When you run this program it will loop
ten times, adding one to the variable Q each time. When Q>10, the
loop stops. Run it and see the numbers 1-10 on the screen.

Experiment 2: Loop Music

Now enter this program. The loop will operate as before, except that the
variable will start at 30 and increase to 200. Each time the loop cycles,
Z is increased by one.

The command SOUND is used to play notes from the TV speaker. The
pitch or frequency is determined by Z in the command: SOUND Z,1.

10 FOR Z=30 TO 200
20 PRINT Z
30 SOUND Z.1

40 NEXT Z

Check your listing for accuracy as before, adjust the TV volume to about
mid range, and run this program. If you would like to experiment

with the SOUND command, replace the numbers 30 and 200 in Line 10
with two other numbers. The first number must be lower than the
second. Values between 1 and 255 must be used or the program will

not work. List your program, change Line 10 to the values you want,
and run it again to hear the effect.

- 25

Lesson 4: Average Calculator (continued)

_

Experiment 3: Other Counters

We use FOR/NEXT loops because they are convenient. There are other
ways to program the same effects. For example, the program above
could also be written like this:

102=30

20 PRINT Z

30 SOUND Z.1

40 Z=Z+1

50 IF Z<=200 GOTO 20

Try this program and see that it produces the same effect as the
FOR/NEXT loop. The variable Z begins at 30 and increases to 200,
creating a rising pitch. When Z is increased to 201, the |F condition in
Line 50 is not met and the program stops.

Experiment 4: Auto Average

In Average Calculator you had to decide how many numbers you
wanted to average together. With this program you can input as many
numbers as you want, then get the average.

One way to stop and average all the inputs is to check for a special
number. In this example we use the number 999 to tell the program
that you're through and would like the answer. If you are averaging
grades, for example, you could enter as many as you like. When you
enter the number [9][9][9] for a grade, the program will realize that

you are through and would like the average of all grades entered so far.

Clear your computer with a [N[EIW command, then enter this
program carefully. When you've finished, type [LJ[1J[SI[T] and press

ENTER| to check it.

Learning Lab is no longer checking your typing. If you make an error
in one of the instructions, just type it again and press |[ENTER] to
replace it in the program.

10 CLS:T=0:N=0

20 INPUT "VALUE";V

30 IF V=999 GOTO 70

40 T=T+V

50 N=N+1

60 GOTO 20

70 A=T/N

80 PRINT “"THE AVERAGE IS™;A

26

Lesson 4: Average Calculator (continued)

List your program and check it carefully. Then run it and enter several
numbers. When you want to know the average, enter the number ElE]EIR
This signals the computer to go to Line 70 where the average is
computed and printed.

After you've run this program a few times, see if you can draw a
flowchart diagram to show how it works. The variable T stores the
total of all numbers entered and N stores the number of terms that
have been added so far. The decision in Line 30 should be drawn in a
diamond shaped box with two outputs. If Vequals 999, one path is
followed. If V is not equal to 999, then another path is taken by the
computer.

27

Lesson 4: Average Calculator (continued)

AVERAGE
CALCULATOR
LESSON 4

CLEAR
10 SCREEN
& TOTAL
”\
20 TITLE [e====" CALCULATOR..
N
S S R
30
KEYBOARD ﬂUT ------- HOW MANY NUMBERS?
e
Y
:8 PRINT NUMBER 1 VALUE?

60
KEYBOARD —'X INI;UT

NO

90 COMPUTE
100 AVERAGE

THE AVERAGE IS 10

STOP

Lesson 5: Expressway
—

Lesson 5: Expressway
Graphics: POINT(B.V), PRINT TAB, CHR$(N)
Sound: SOUND(F.D)
Motion: JOYSTK(N)
This program and your computer create a video game. You will use the
right joystick to control a car on the expressway. The computer
shows you a bird’s-eye view from above the car as you zig and zag,
trying to miss the traffic. Each time you collide with another car or
run into the wall on either side, you will add points to your score. You
can try and hit as many cars as possible, or see how long you can go
without having an accident. The computer will create an endless
stream of traffic for you to dodge and will give you a printout of your
current score.
If you don’t have joysticks, there is a special addition to this program
that lets you use the arrow keys on the keyboard instead of the
joystick. See Experiment 4.
Load Computer Learning Lab and Lesson 5 from the cassette with
[CIL]OJAlDIM and [EIXI[E]C]. To test your driving skill against the
computer, enter these twelve instructions. If you would rather enter
the program automatically, type AUIT[Q] and press |[ENTER].

10 X=15

20T=0

30 A=INT(JOYSTK(0)/22)-1

40 X=X+A

50 Y=POINT(X*2,16)

60 IF Y>0 THEN X=X-A:T=T+1:SOUND 150,1

70 PRINT @256+X.CHR$(128);

80 PRINT @480.T;TAB(4) CHR$(207);

90 PRINT TAB(RND(26)+3) CHR$(175);

100 PRINT TAB(30) CHR$(207)

110 GOTO 30

29

Lesson 5: Expressway (continued)

ﬁ

Run Expressway

To run this program, type [RJ[UJ[N] and press the key. Use the
right joystick and control your car by moving left or right. (If you
don’t have joysticks, please go to Experiment 4, page 34 now and
modify the program so that the arrow keys on the keyboard can be
used for driving.)

The program is designed so that the car on the screen ‘“‘drives’” much
like a real car. Notice that the car will be moving left, not moving, or
moving to the right. If the joystick is near the center, the car goes
straight. Moving the joystick to either side causes the car to turn and
continue turning until the stick is centered again.

Adjust the volume control on your TV to hear the “BEEP” each time
you hit another car or the edge of the expressway.

The numbers on the left show your score. If your score goes above 99,
however, the game no longer works properly because the program
only allows for two digits in the number that represents your score.

To stop, just press the key. Each time you run Expressway
you will start with a clean driving record and zero accidents. To make
Expressway a competitive game, take turns with a friend and see who
will cause the lowest number of collisions in a given time period.

How Expressway Works

Now see how your computer can be programmed to create a video game.
If you haven’t already stopped the program, press the key.
Type [LM[SI[T] and press to display a list of the instructions
on your screen. These eleven instructions are all that’s required.

Before you learn what each of these instructions does and how they
work together in the game, look at the flowchart diagram on

page 35 and see what the computer is doing while the game runs.

You have already seen that the car begins in the middle of the screen
and that the score starts at zero when you type E]@[E This step is
shown in the first block in the diagram. The rest of the program is
inside a loop; that is, the steps that begin with the joystick input and
go through the final printing on the screen are repeated over and over
again. This cycle or loop runs continuously until you press [BREAK]
and stop the program.

Each time the loop runs, the computer moves the cars and prints a
new picture on the TV, much like an animated cartoon or a movie.
Now let’s look at the loop in detail and see how each frame in this
“movie” is made. The program begins each frame by checking the
joystick to see if you are steering to the left, center, or right.
Depending upon your input, the car may move right or left.

30

Lesson 5: Expressway (continued)
e e e O e S e e e S e S e e S B R e e, I e e

The first question in the program is “Have you hit anything?” To find
out, the program checks the spot directly in front of your car to see if
it is occupied by a colored block. If you’re about to run into another
car or the edge of the expressway, the program moves the car back
again and scores an accident. In this way, you will appear to bounce
as you hit obstacles.

When an accident is scored, the total is increased by one, and a
“BEEP” is played in the speaker. Whether you have hit something or
not, the car is drawn in its new position as the computer prints a blue
box on the screen.

Now, several print commands are used to create the score, the left
edge of the expressway, a new car in a random location, and the right
edge. All of this data is printed on one line at the bottom of the screen.
As this line is added at the bottom of the picture the entire screen
moves up one line.

The effect that causes the expressway to “move’” is created by the line
feed after the last line is printed on the screen. This is similar to the
carriage return on a typewriter, rolling the paper up one line. In this
program the line feed moves the picture up one line each time the
program loops. To see how this effect works, just press the
key several times and see the listing move up the screen.

LINE 10 sets the value of X so that your car will begin in the center of
the expressway: 15 spaces from the left edge of the screen. The
variable X keeps track of the car’s position. As X changes, the car
moves left or right.

LINE 20 sets the total number of accidents, T, to zero.

LINE 30 sets A equal to the position of the joystick. The variable A
will be O if the joystick is near the center, — 1 if the joystick is moved
to the left, and +1if the joystick is moved to the right. You can copy
these instructions whenever you wish to use the joystick in other
programs.

LINE 40 adds the change in direction from the joystick, A, to your
car’s position, X. If the joystick is near the center, A equals zero and
X does not change. Move the joystick to either side and X will change
by one position each time the program loops.

LINE 50 examines the point directly ahead of your car and sets Y
equal to the number of any colored block at that location. If the screen
is blank at that point, Y is zero. There are twice as many dots or
locations on the screen with the point command as there are with the
print command. To examine the screen at column X and row 8, (the
location directly below the car), POINT(X+2,16) is used.

31

32

Lesson 5: Expressway (continued)

LINE 60 is a test to see if you have hit anything. Since Y is equal to
the color number of any object in front of your car, you can test Y and
see if you have had an accident. When the background color is
present, Y is zero. If Y is greater than zero, the point you're
examining is a color other than the background. This means you’ve
hit another car or the edge. If there is an accident, three things
happen. The joystick input is subtracted from the new location to
keep you from driving through the edge and off the road. The total
number of accidents, T, is increased by one. A “BEEP” is played to let
you know that you’ve hit something.

LINE 70 prints a black square representing your car. The location 256
is on line number eight, at the left edge. Adding X to 256 plots a point
on line eight that is X units from the left. The symbol CHRS$ is used
with PRINT to place a colored box on the screen. Three values are
used in this program with CHR$(175) printing a blue box, CHR$(128)
printing a black box, and CHR$(207) printing a white box.

LINE 80 prints the total number of accidents at location 480, which is
the lower left corner of the screen. This is followed by a white square
to mark the left edge of the expressway.

LINE 90 prints a blue square at a random location on the expressway.
This is how the computer generates traffic for you to dodge. The
PRINT TAB command tabs or moves to the right a certain number of
places from the left margin before printing. In this instruction the
number of tabs or spaces from the left is random so that the new
traffic can appear anywhere on the bottom line.

LINE 100 prints a white box at the right side of the screen, 30 spaces
from the left edge. This box prints the right-hand boundary. Notice
that the semi-colon (;) is not used after this print command. A semi-
colon would suppress or prevent the line feed after each line is
printed. In Lines 70, 80, and 90 the semi-colon is used so that the
screen won’t move up automatically. After Line 100 we want the
screen to scroll upwards, so the semi-colon is not used at the end.

LINE 110 sends the computer back to Line 30 to read the joystick,
input a new direction, and create the next frame in Expressway.

Experiment 1: Time Limit

You can make Expressway a competitive game if you add a time limit.
With this change the program will loop for a certain number of times
and then stop automatically. You can compare scores with a friend or
play against the computer for the lowest number of accidents. To do
this, you will need a new variable to keep track of the number of times
the program has cycled. You can use any letter you like, such as C,
for “clock.” Begin the program by setting the clock to zero:

16 C=0

Lesson 5: Expressway (continued)

The computer will count each time the program loops if you add this
instruction:

45 C=C+1
Finally, add this test to stop the program after it has cycled 300 times.

105 IF C>300 THEN END

Run and test the program and see if you like the length of time it runs
before stopping with a final score. If you want to run each trial for a
longer or shorter time, just change the number 300 in this instruction.

Look again at the flowchart and notice that the first instruction that
sets the clock to zero (Line 15) only operates once, when the program
is first run. The two other instructions that add one to the time and
check to see if the time is up are both inside the program loop.

Experiment 2: Add a Report Card

Add a scoreboard to show the results at the end of the game with these
additions:

105 IF C>300 GOTO 120

120 PRINT "CONGRATULATIONS, YOU HAD “;T."ACCIDENTS"

Now run the program. After 300 frames, the message is printed with
the total number of accidents for that trial.

Experiment 3: Color the Traffic

Multi-colored traffic will replace the blue boxes if you use the random
functions to set the color of the car that is added with each frame.
This single change in Line 90 will do it:

90 PRINT TAB(RND(26)+3) CHR$(127+RND(8)*16);

The PRINT TAB works as before and spaces a random number of
squares from the left margin. Instead of printing a single-color box,
however, this new instruction prints a randomly colored box.

Here is a list of the color numbers that are picked in Line 90 by the
instruction (127+RND(8)=16):

143 green
159 yellow
175 blue
191 red

33

Lesson 5: Expressway (continued)

34

207 white

223 light blue-green
239 pink

255 orange

Notice that color 143 (green) is the same color as the background.

This green-on-green phantom car can nonetheless be hit, so be careful.

Experiment 4: Keyboard Control
If you don’t have joysticks you can use the left and right arrow keys to
control the car’s motion. Just type these instructions and press the
ENTER| key after each one. Adding these lines to your program will
let you use the left and right arrow keys to control the car.

30 K$=INKEY$

32 A=0:IF K$=""GOTO 40

34 IF ASC(K$)=8 THEN A=A-1

35 IF ASC(K$)=9 THEN A=A+1

Line 34 checks to see if a left arrow was pressed. The next instruction
checks for a right arrow. The variable A is adjusted accordingly.

With this addition to the program, the variable A is adjusted with the
arrow keys and with the joystick.

EXPRESSWAY

LESSON 5

10
20

Lesson 5: Expressway (continued)

3
JOYSTICK —»\lPUT /

CAR AT
CENTER
SCORE=0
DIRECTION
MOVE
CAR
60
arr \YES MOVE
9 CAR BACK
NO
SCORE - —
70 PRINT | _______
CAR =
rﬂ
80 PRINT TOTAL
% EDGE
TRAFFIC [======-
100 EDGE
3 m
e —————————————
110 REPEAT

35

Lesson 6: Counting Machine

Lesson 6: Counting Machine
Program Loop: FOR/NEXT/STEP

In this lesson you will see how to program your computer to count. Since
the computer does many things using numbers, this ability will be useful in
a wide variety of programs.

The method often used for counting up or down is the “program loop.”
With a loop, your computer will repeat some of the instructions in a
program over and over again. The FOR/NEXT commands make it
easy to create loops in your programs. With counting loops you can
increase or decrease numbers easily.

Load Lesson 6 from the cassette using [C][L][OJ[A]DJM] and [E]X][E][C].
Enter these 11 instructions yourself, or type @@@ and Computer
Learning Lab will enter the program for you.

10 CLS

20 INPUT "START"A

30 INPUT "END":B

40 INPUT “STEP";S

50 PRINT “FOR L ="A;"TO";B;"STEP";S
60 FOR L=A TO B STEP S

70 PRINT L

80 NEXT L

90 PRINT

100 INPUT "GO AGAIN (Y.N)";AS

110 IFA$="Y" GOTO 10

Run Counting Machine

When you’ve entered the complete program, run it. The program begins
by asking you to input a number for the variable START. Type [1]

and press [ENTER]. Next, type the number [5][0] for END and press
[ENTER]. Finally, input the number [1] again for STEP and press
[ENTER].

When you enter the final number, the program will automatically
begin counting from 1 to 50. With the STEP set at 1, the program
counts by ones: 1, 2, 3, 4, etc.

37

Lesson 6: Counting Machine (continued)

w

This program contains an automatic repeat feature. The computer

will ask you if you wish to go again. Type a and press [ENTER] to
run the program again. Now enter these values, and remember to
press the [ENTER| key after each one.

START? 10
END? 200

STEP? b

This time the computer counts from 10 to 200 by fives. Now try
counting backwards. Select to go again and enter the following
numbers. Notice that the START is higher than the END and that the
STEP is negative.

START? 250
END? 1
STEP? —4

One more example will show you how to step by a fraction. When
you try these numbers, the printing will scroll off the screen as the
computer counts from 5 to 70 by .5, or one-half, steps.

START? 5
END? 70
STEP? .6

Try any other combinations you like for the START, END, and STEP. If
you select a wide range, the computer can take days to print all the
numbers. To cause the program and the printing on the screen to pause,
just press and the key. Pressing any other key continues the
program again.

After you've tried several combinations, stop the program by selecting
[N] when you have the option to repeat.

How Counting Machine Works

The first part of the program clears the screen, inputs the variables for
the counting loop, and prints a remainder on the screen so that you
can see what the START, END, and STEP are.

All of the counting is done in the FOR/NEXT loop (Lines 60, 70, and
80). The variable L is used to keep track of the loop. When the
program first reaches Line 60, L is set equal to the starting value:

38

Lesson 6: Counting Machine (continued)

—

START. Using numbers from the first example, L would be set to 1.
We have chosen the variable name A to hold this value. We could
have used any other letter or name, such as “B”, “BEGIN,” “FIRST,”
or even “JOE.”

Then the computer prints the value of L on the screen.

When the computer reads NEXT L in Line 80, it compares L and B. If
L is greater than B, the loop is finished, and the program continues
with the next instruction: Line 90. If L is not greater than B, the
computer repeats the loop by going back to Line 60 and adding the
value of Sto L.

After the loop has finished counting, the program continues. The
message GO AGAIN (Y.N)? is printed, and the variable A$ is set equal

to the letter you type. Type [Y], press [ENTER] and the program
repeats.

Notice that the variable A is used to store a number, and the variable
AS is used to store a letter.

LINE 10 clears the screen.

LINE 20 sets the variable A equal to the keyboard input.
LINE 30 sets the variable B equal to the keyboard input.
LINE 40 sets the variable S equal to the keyboard input.

LINE 50 prints a message to show how the instruction for the
FOR/NEXT loop will look with the numbers that have been entered.

LINE 60 begins the FOR/NEXT loop. The variable L is set equal to A
when the loop begins. Each time the loop operates, the value S is
added to L.

LINE 70 prints the value of L on the screen. The semicolon (;) causes
the next number to be printed one space to the right of this number.

LINE 80 completes the loop. When the computer reads NEXT L it
returns to the line where FOR L was used. If L is less than or equal to
the final value, it is increased by the number following the word STEP
in Line 60. If L is more than the final value, the computer does not
loop back to Line 60; it goes to the next line in the program.

LINE 90 prints a new line after all numbers have been printed on the
screen. This makes it easier to read the message at the end.

39

Lesson 6: Counting Machine (continued)
_—

LINE 100 prints GO AGAIN (Y,.N)? and sets the variable AS$ equal to
the letter you type. You could have used K$, B$, MORES, or any other
name that ends in a dollar sign to hold the letter you input from the
keyboard.

LINE 110 goes to Line 10 and repeats the program if you input the
letter [Y]. With any other input the program stops.

You will use loops like this in many different kinds of programs.
Begin these experiments by adding sound so that the loop is more fun.
Then try writing program loops of your own.

Experiment 1: Loop Music

Add this instruction to your program, and the computer will play a
note when it prints a number on the screen. The SOUND command
converts a number between 1 and 255 into a tone. You will use the

variable L to set the pitch of the tone. The duration will be set at 1.

75 SOUND L1
When you press |[ENTER], this new instruction is added to your
program. Type [CMS][T] and press |[ENTER| again, and see that the

new program contains this added instruction.

Adjust the volume on your TV to a normal level. Run the program
and try these inputs:

START? 1
END? 255

STEP? 1

Experiment 2: More Music
You just heard the full range of the SOUND command. As L varied

from 1to 255, the sound varied from low to high. Try the next loop
and reverse the process. Notice that this time we’re only playing
every fifth step.

START? 255

END? 1

STEP? -5

40 |

Lesson 6: Counting Machine (continued)
P Y S e ol S o S e A e e e B e e e A e e R e T | I e e S T e

Experiment 3: Illegal Action

Now it’s time to try something that won’t work and see what happens
when you make a mistake. You can’t harm your computer by typing
in the wrong instruction. So always feel free to experiment, like this:

START? 1
END? 500
STEP? 2

When you run this loop, the computer will count to 257 and then print
? FC ERROR IN 75 on the screen. This is an error message from the
computer and it tells you that you have an “illegal function call in
Line 75.”

This message doesn’t mean you’ve broken the law. It simply means
that you tried to use a number that’s out of range for the SOUND
command. When L reached 257, the command SOUND L,1 wouldn’t
work because the pitch was out of range. The error message told you
exactly what was wrong.

There are two ways to fix this problem. You can limit the range of the
counting loop to the numbers 1 through 255, or you can change Line
75.

Experiment 4: Make it Legal

Here's a way to keep the numbers for SOUND between 1 and 255. This
first instruction creates a new variable SND that converts the number
in L to a number between zero and 254. The next instruction adds 1 to
SND and uses this for the SOUND command. In this way, we avoid

the problem of a function call error. Add these lines to your program:

75 SND=L-INT(L/254)+254
77 SOUND SND+1,1
List your program and check these lines carefully, then run the same

experiment again. This time the sound will stay within range, and
there won’t be any messages from the computer.

START? 1

END? 500

SKIpP? 2

41

Lesson 6: Counting Machine (continued)
—

Experiment 5: Space Sounds

When a program doesn’t work quite right, we say that it has a “bug”
or a mistake. The problem you had with the FC error is a bug that
you’ve fixed by changing the program. Now you can count forwards
or backwards and step by any amount you choose, and the program
will always keep the number for the pitch within the correct range.
Try these examples, then experiment with your own ideas:

START? 1 END? 9000 STEP? 51
START? 1 END? 9000 STEP? 53
START? 56000 END? -5000 STEP? —-67

START? 5000 END? -5000 STEP? -101

Experiment 6: Writing Loops

The program for this lesson has shown you how loops operate. When
writing loops for your own programs, you usually won’t need the
extra instructions for inputting data and repeating the program.
There are several ways you could duplicate the examples with short
programs.

Clear your computer by typing [NJ[E]W and pressing [ENTER], then run
these programs and see that they duplicate the results of the first
examples in this lesson. We used the variable L in the lesson. You
can use any variable you like, for example:

10 FOR Z=1 TO 50
20 PRINT Z;
30 NEXT Z

10 FOR X=10 TO 200 STEP 5
20 PRINT X;
30 NEXT X

10 FOR COUNT =250 TO 1 STEP -4
20 PRINT COUNT;
30 NEXT COUNT

100 FOR NUMBER=5 TO 70 STEP .5
101 PRINT NUMBER;
102 NEXT NUMBER

42

Lesson 6: Counting Machine (continued)
e s B e R WS e e e e T e T (i e L . T e e ey

Experiment 7: 99 Bottles

Here is a favorite loop program from my friend Ted Nelson:

10 CLS

20 FOR N=99 TO 1 STEP -1

30 SOUND N,5

40 PRINT @O.N;"BOTTLES OF BEER ON THE WALL"
50 PRINT N; "BOTTLES OF BEER.”

60 PRINT “ IF ONE OF THOSE BOTTLES”

70 PRINT © SHOULD HAPPEN TO FALL . . "

80 PRINT N-1; "BOTTLES OF BEER ON THE WALL"
90 NEXT N

100 PRINT “"ALL GONE!"

43

44

COUNTING
MACHINE
LESSON 6

KEYBOARD

Lesson 6: Counting Machine (continued)

START ? .1

END ? 100
STEP ? |

FOR L=1TO 110 STEP |

10 CLEAR
SCREEN
20 \
30
INPUT
40 START
END
STEP
50 PRINT
60 LOOP L
70 PRINT L
80
YES
NO
90 PRINT

KEYBOARD

123456
7891011
12, e

GO AGAIN (Y,N)?

Lesson 7: Kaleidoscope
e D e e e R R e O N e e

Lesson 7: Kaleidoscope
Graphics: SET(H,V.C)

Color

One of the most interesting things you can do with your color
computer is to create patterns and designs. Artists who use
computers in their work often program randomness into their art and
use symmetry to create a balanced appearance. In this lesson you will
use a program to create a symmetrical pattern that never repeats.
Randomness is used in forming the design and in selecting the colors.

Load Lesson 7 from the cassette with @@@@] and E”E[E]@

Press [ENTER] when you see the title, then enter these nine instructions.
Be sure to press [ENTER| after each one. If you want to enter the
program automatically, type [AJ[U][T][O] and press the [ENTER] key.

10 CLS 0:C=3

20 X=RND(32)-1

30 Y=RND(16)-1

40 SET (X.Y.C)

50 SET (X.31-Y.C)

60 SET (63-X.Y.C)

70 SET (63-X,31-Y.C)

80 IF RND(20)=1 THEN C=RND(8)

90 GOTO 20

Run Kaleidoscope

When you run this program, the screen will clear, and a symmetrical
pattern of colored dots will appear. As the pattern builds, notice that
the screen is actually divided into four sections and that the same
pattern repeats in each section. The screen is acting like a mirror
with the pattern reflected in the four corners.

Gradually the colors will begin to change, and the pattern will fill the
screen. You can stop the pattern at any time by pressing [SHIFT]| and
the key at the same time. To continue the program, press any
other key. When you would like to see a different pattern, press

[BREAK], type [RI[UI[N], and press [ENTER].

45

Lesson 7: Kaleidoscope (continued)
R e R T O e R e e e e e R

How Kaleidoscope Works

We are using the random number generator in the computer to create
the pattern. As the program cycles, a single colored dot is placed in
the top-left section of the screen. Then this position is repeated in
each of the other three sections.

The decision to select a new color is based on a 1-in-20 probability.
Each time the program cycles, the computer generates a random
number between 1 and 20. If the number is 1, a new color is picked at
random; for any other number, the color stays the same. This
probability creates, on the average, about 20 dots of any color before a
new color is picked. Actually, since the computer may pick the same
color again, the rate of change is slightly less than this.

The random number generator is used to pick values for X and Y.
Then these variables control the positions of all four dots that are
plotted on the screen.

The SET command places a dot of any color anywhere on the screen.
The screen is 64 dots or positions wide and 32 dots high.

LINE 10 clears the screen and colors it black (color 0).

LINE 20 picks a random number for X that is between zero and 31.
LINE 30 picks a random Y between zero and 15.

LINE 40 plots a dot in the top-left section of the screen. If X and Y are
zero, the dot is in the top-left corner. If both variables are at their
maximum (31 and 15), the dot is next to the center of the screen.

LINE 50 plots a matching dot in the top-right section of the screen.
LINE 60 plots a dot in the lower-left section. This dot is in the lower-
left corner if X and Y are zero and near the center if they are
maximum.

LINE 70 plots a matching dot in the bottom-right section.

LINE 80 creates a random number between 1 and 20. If this number is
1, the computer picks a new color number between 1 and 8.

LINE 90 sends the computer back to Line 20 to pick two new numbers
for X and Y.

One of the ways you can vary the appearance of this program is to
alter the rate at which the colors change. Increasing the number 20 in
Line 80 will cause the colors to change less often because the odds of
the random number being equal to 1 are less. Here are some other
ways you can modify this program:

46

Lesson 7: Kaleidoscope (continued)
——l_

Experiment 1: Auto Repeat

Try adding a loop around the entire program. When the loop is finished,
the computer will go to the next line in the program and clear the
screen. Add these lines carefully, then list your program to check it.

15 FOR N=1TO 100
90 NEXT N

100 GOTO 10
Here is how your complete program should look:

10 CLS 0:C=3

15 FOR N=1TO 100
20 X=RND(32)-1

30 Y=RND(16)-1

40 SET (X.Y.C)

50 SET (X.31-Y.C)

60 SET (63-X.Y.C)

70 SET (63-X.31-Y.C)
80 IF RND(20)=1 THEN C=RND(8)
90 NEXT N

100 GOTO 10

Now the program will loop between Line 15 (FOR) and Line 90 (NEXT)ina
loop. After the loop has cycled 100 times, the program will go on to Line
100. As you can see, this will cause the program to start over again at
Line 10. Try this change and see if you like the program clearing and
starting over after 100 positions have been plotted.

Now consider changing Line 15 so that the pattern builds for a longer
time before clearing. I prefer the pace when the program cycles 500
times. Try it with this instruction:

15 FOR N=1TO 500

Experiment 2: Add a Tune

Computer art is not limited to visual effects. Try adding a tune with this
instruction:

75 SOUND 6+X+20.RND(3)

With this instruction your program will create a note that varies in
pitch as X varies the position of the dots. The second number after the
SOUND command determines the duration of the tone. In Line 75 this
duration is set to a random number between 1 and 3 to create a rhythm.

Some people like the tune that this program plays, and some don't.
Try your own recipe and see if you can find a method for generating
computer music that appeals to you.

47

48

Lesson 7: Kaleidoscope (continued)

KALEIDO-
SCOPE
LESSON 7

0 CLEAR
1 SCREEN
20 PICK X
30 PICK Y
0 63
e
0
SET m
= X,y [T J _J_
31
v
—__\
SET |______ |
50 X, 31-Y .
\—__——J
r-‘-_-—\
SET | ________| =
60 63-X, Y)
__/
ﬁ
SET
01 63Xx,31.y [TTTTTTTTT —l—.
\——-’
1
" ODDS PICK
1:20/ NEW COLOR
20
90 REPEAT

Lesson 8: Decision Maker

“—

Lesson 8: Decision Maker
Branching: ON-GOTO

Keyboard: INKEYS

Many methods for determining the course of future events are based on
chance. From Tarot cards to I Ching, random events are combined
with intuition to help us see our fate. While the computer is short on
intuition, it’s a master of random events.

In this lesson we will use two new commands to create a computerized
information service or advisor. The ON-GOTO command makes it
easy to branch to a wide variety of possibilities in a program. We will
use this capability to create the messages displayed on the screen.
With the INKEY$ command we can read a key from the keyboard
without stopping a program. Unlike the INPUT command, INKEY$

lets you type a single key and effect a running program.

Load Lesson 8 from the cassette with @@@ and [E_HZ][E]

To consult your own computer, just enter these instructions. You can

also type [AIUITIQ] and press [ENTER] if you would like Computer
Learning Lab to enter the program for you.

10 CLS

20 PRINT @133, ". . . ASK THE COMPUTER . . .”
30 IF INKEYS$="" GOTO 30

40 ON RND(4) GOTO 50.60.70.80

50 PRINT @239. "YES":GOTO 90

60 PRINT @240. "NO":GOTO 90

70 PRINT @238. "MAYBE":GOTO 90

80 PRINT @237. "NO WAY":GOTO 90

90 FOR DLY=1 TO 500:NEXT DLY

100 GOTO 10

Run Decision Maker

When you first run the program, the screen clears and prints the title.
Think of a question you wish to have answered, then tap the space bar
gently. The computer will answer your inquiry and clear the screen
again.

— 49

Lesson 8: Decision Maker (continued)

_

Now think of your question, type [R][UJ[N]. and press [ENTER]. When
you’re ready, press the space bar. If you don’t like the answer you get,
press the space bar again. The computer’s advice, on the average, is
correct about 50% of the time.

How It Works

The first two instructions clear the screen and print the title.

The keyboard is read by INKEYS. That is, the computer checks the
keyboard and automatically inputs any key that is pressed. If the
input from the keyboard is a null string (meaning that no key has
been typed), the program loops back to the same instruction and reads
the keyboard again. In this way, the program “hangs” or simply
waits for you to press any key. After you press a key, the program
continues.

The ON-GOTO command simply transfers the program to one of
several lines, depending on the value of RND(4). We use this feature
to select which message to print.

After printing one of the messages, the computer pauses for a short
delay. Then the program restarts, prints the title, and waits for you to
press any key. As you can see by the program, it doesn’t matter
which key you press to get your answer.

LINE 10 clears the screen.
LINE 20 prints the title starting at screen location 133.

LINE 30 reads the keyboard. If no key has been pressed, this
instruction is repeated. As soon as any key is pressed, the computer
goes to the next line in the program.

LINE 40 sends the computer to one of the listed lines, depending on the
value of RND(4). If this value is one, the computer goes to the first
line in the list: Line 50. If it is a two, the computer goes to the second
line number in the list: Line 60. Similarly, a value of three or four will
select Lines 70 or 80.

The value that selects the line does not have to be RND(N). Here are
other forms of the ON-GOTO command:

ON A GOTO 20,30.400,55
ON X-3 GOTO 300.400.500
ON CHOICE GOTO 1000,2000,7000
LINE 50 prints YES starting at location 239, then goes to Line 90.

LINES 60-70-80 print their messages and go to Line 90.

50

Lesson 8: Decision Maker (continued)
—

LINE 90 causes a time delay while the variable DLY is increased from
one to 500. This FOR/NEXT loop is two separate instructions, written
on the same line and separated by a colon.

LINE 100 sends the computer back to the beginning of the program.

We can add a lot to this program with some convincing sound effects
and a wider variety of answers. If Decision Maker is still running, stop

the program by pressing [BREAK]. When OK appears, type [L][T][SI[T]
and press [ENTER| to see the program on your screen. Now you can
add to or modify these instructions.

Experiment 1: Music to Think By

Let’s make the computer sound like it’s actually trying to think up an
answer with these additional lines. Type carefully and don’t forget

to press after each line.
35 FOR S=1T0O 10
36 SOUND RND(100)+150,RND(6)
37 NEXT S

Type IIJIS] and press [ENTER| to see that you've entered these lines

correctly. If not, just type them over and try again.

This short FOR/NEXT loop will play a tune of ten notes. Both the
frequency and the duration are randomized. Now run the program
again. See if the computer’s answers are more convincing with this
addition.

Experiment 2: Beeeeeeeeeeeep!

The time delay in Line 90 will work in any program situation where you
wish a pause. By changing the number of times the loop operates, you
can create delays of less than a second to many hours.

If you want a musical background, however, you can use the SOUND
command to create a delay. Use [BREAK] to stop your program. Then
list it with [LJ[1J[S][T] and the [ENTER] key.

Change Line 90 to create a long musical tone. The second number in
the SOUND command controls the duration of the tone. Notice that
the duration (25) is much higher than before with this new
instruction:

90 SOUND RND(100),25

51

Lesson 8: Decision Maker (continued)
L _ _

Now run the complete program and see if the sounds make it more
interesting.

Experiment 3: Vocabulary Building

There’s no limit to the things you can have your computer say, and
you can add as many words or phrases as you wish. Just add the line
numbers to the ON-GOTO list and increase the range of random
numbers.

As an example, here’s how to add three more comments. Change
Line 40 two ways: increase the 4 to a 7 and add the three new line
numbers to the list. The new lines with additional words will be
numbered 45, 55, and 65.

40 ON RND(7) GOTO 50.60.70.80.45.55.65

All seven possible numbers for RND(7) will now branch or go to a
different line in the program.

Write your own comments or use these “answers.” The PRINT @
number is adjusted so the words will print in the center of the screen.

Here are some suggestions:

45 PRINT @234.”ASK AGAIN":GOTO 90
55 PRINT @235."BEATS ME":GOTO 90
65 PRINT @238."NEVER":GOTO 90

Try these additions to the program, then add as many answers as you
like. For each new answer change the random function and add to the
list in Line 40.

Experiment 4: Long Listings

By now your program has grown longer than the screen. Try listing it
and see that the first few lines scroll off the top.

You can list the first section, or any other part of a program by adding
the first and last line numbers of a section to the LIST command. Note
how the hyphen (-) is used in these examples. Try each one and see
the effect.

LIST 10-60 lists lines 10 through 60.

LIST -50 lists all lines up through Line 50.
LIST 50- lists Line 50 and all following lines.

52

DECISION
MAKER
LESSON 8

KEYBOARD

90

100

Lesson 8: Decision Maker (continued)

ASK THE COMPUTER

ws ||

NO

MAYBE

NO WAY

\\I//

—— THE ANSWER —

71N

DELAY

REPEAT

53

Lesson 9: Area Calculator

Lesson 9: Area Calculator

Formulas

Special Calculators

This calculator program computes areas and is very useful whenever
you are estimating how much paint, carpeting, wallpaper, tile, grass
seed, or other material to buy. To find the total area to be covered,
you will enter the dimensions of smaller sections. The computer will
calculate the area of each section and keep a running total.

Not only areas, but also volumes and other quantities may be
calculated with this programming model. In the Experiments section

you will see how to create a similar program from any mathematical
formula.

Load Lesson 9 from the cassette using [CI[L][O][AlIDIM and [E]X[E][C].

Type each of these ten instructions and press after each one.
You can also type @@@ and press if you would like
Computer Learning Lab to enter the program for you.

10T=0

20 CLS

30 INPUT "LENGTH";L

40 INPUT "WIDTH";W

50 A=L*W

60 PRINT "THIS AREA:"A

70 T=T+A

80 PRINT “"TOTAL AREA:";T

90 INPUT "MORE (Y.N)";AS

100 IF As="Y" GOTO 20

Run Area Calculator

Now type [RJU][N] and press [ENTER]. The screen will clear, and you
will be asked to enter a number for the length.

Type [2][0] or some other small number for the length and press
ENTER]. Now type another small number like [3][6] for the width and
press [ENTER] again. The area you’ve specified is calculated and

55

Lesson 9: Area Calculator (continued)

_

displayed along with the total area. Since this is the first calculation,
this area and the total area are the same.

Now select to go again and enter two more dimensions. This time,
the area you specified is shown along with the total area for both
surfaces.

Here’s how to use this program in computing a total surface area,
such as the amount of carpeting required for a home. Begin by
thinking of the surface as a combination of squares or rectangles.
If there are several rooms, for example, consider each room
separately. If a room isn’t a rectangle, divide the room into two or
more rectangles that you can measure easily.

Pick the units (feet, meters, yards, etc.) you will use to get the answer
you want. To find the number of square yards of carpeting to buy,
measure the dimensions of each small area in yards. To get a total
area in square meters, measure all dimensions in meters.

Stop the program by selecting N or by pressing [BREAK|. Then run the
program again. This sets the total area to zero (Line 10).

Now enter the dimensions of each rectangle that makes up the total
area you wish to calculate. As you enter the dimensions for each
small area, the total area will increase.

How Area Calculator Works

Stop your program by pressing [BREAK]. List it on the screen by typing
[LJT][S][T] and pressing [ENTER]. Look at the flowchart diagram on

page 60 and the listing on the screen to see what the computer is

doing while this program runs.

The total area is set to zero when the program is first run. Then the
screen is cleared. The numbers you input for length and width are
used by the program to compute the area with the formula: A=L«W.
The screen shows the result as THIS AREA. Total area is computed
next by adding the area just calculated to the previous total, T. Then
the new total area is printed as: TOTAL AREA.

Finally, the program asks if you have any additional areas to add. If
you enter [Y], the program loops back to clear the screen and input
new dimensions. Notice that the program doesn’t loop back to the
beginning because this would reset the total area to zero.

LINE 10 sets the variable T to zero. This variable is used to store the
total area.

LINE 20 clears the screen.

56

Lesson 9: Area Calculator (continued)
R D e e O S s s G Al T B e e e e e R P ST | B e SR

LINE 30 prints LENGTH? and sets the variable L equal to the number
you input.

LINE 40 prints WIDTH? and sets the variable W equal to the number
you input.

LINE 50 computes the area with the formula: A=L*W.
LINE 60 prints THIS AREA and the value of A.

LINE 70 computes the total area with the formula: T=T+A,
LINE 80 prints TOTAL AREA and the value of T.

LINE 90 prints MORE (Y,N)? and sets the variable A$ equal to the
letter you type.

LINE 100 sends the computer to Line 20 to clear the screen and input a
new set of dimensions if you type [Y]. Notice that T (the total area) is
not set to zero when the program repeats.

Programs that calculate specific things can be as simple or as
elaborate as you choose. We will add a feature to this program and
then use this programming concept to build other special calculators.

Experiment 1: Add or Subtract

It’s often convenient to subtract an area when computing totals. If you're
estimating how much paint is required to cover the walls, for

example, it’s easier to add all the wall areas together and then subtract
the windows and doors. If you're estimating how much grass seed to
buy, you might find it easier to add together all the area of your lot

and then subtract the area of the house and driveway.

These additional instructions make it easy to subtract areas. First,
stop your program by pressing |[BREAK|. Then list it by typing
[L][S][T] and pressing [RETURN] again. Now you can add this

subtraction feature to your program by adding these two instructions.
Type carefully and press |[ENTER] after each instruction.

55 INPUT "ADD OR SUBTRACT (+.—)":B$
57 IFBS$="-"THEN A=-A
Now list your program and see the changes. It should look like this:
10T=0
2O CLS

30 INPUT "LENGTH";L
40 INPUT "WIDTH";W

57

Lesson 9: Area Calculator (continued)
__ _

50 A=L+*W

55 INPUT “"ADD OR SUBTRACT (+.—)";B$
57 IF Bs="-"THEN A=-A

60 PRINT “THIS AREA"A

70 T=T+A

80 PRINT “TOTAL AREA™;T

90 INPUT “MORE (Y.N)".A$

100 IF As="Y" GOTO 20

If your program matches the example, type [R][U][N] and press
to run it. Now the computer will also ask if you wish to add or
subtract each area you enter. Try estimating the wall area of the room
you're in by entering the dimensions of each wall. Then subtract each
window or door by entering its dimensions and subtracting its area
from the total.

Experiment 2: Change the Formula

The general form of this program may be used to build a special calculator
for solving any mathematical problem, if you know the formula. For
example, if you want to find the volume of a cube, you can use this
formula:

Volume=Length+*Width«Height

Try writing a program that inputs the length, width, and height and
then prints the volume of a cube. If you have difficulty getting this to
work or would like some help, read the rest of this experiment for a
solution.

In writing a program, you would choose variables to represent each
item in the formula. We used L and W for length and width, so let’s
continue and use H for the height.

First, erase the program you now have by typing [N][E]W and
pressing [ENTER|. Now you can write a new program that will begin
by clearing the screen. Then the instructions will input each
variable with a message to describe what it is. Start with these
instructions.

10 CLS

20 INPUT "LENGTH";L

30 INPUT "WIDTH";W

40 INPUT "HEIGHT";H

58

Lesson 9: Area Calculator (continued)
S e e e R S e S e e e T e P, O S T s

List the program to be sure that it matches the example. Then run it
and see what it does. The program is not complete, but the part you
have entered should print each word and wait for you to input a
number. After you've entered a number for each word, the program
will stop. Now complete your program by adding the formula and the
printout instruction:

50 V=L+W=+H
60 PRINT “THE VOLUME IS:";V

Your program should now be complete. Listit and check to see that
all instructions are correct, then run it and see that it computes the
volume accurately. Here’s what the complete program should look
like:

10 CLS

20 INPUT "LENGTH";L

30 INPUT "WIDTH";W

40 INPUT “"HEIGHT";H

50 V=L+W+H

60 PRINT “THE VOLUME IS":V

If you like, you could also add instructions to compute the total of
several volumes, or have the program ask if you would like to repeat
a calculation.

Experiment 3: Try Your Own

Pick any simple formula such as the area of a triangle or volume of a
sphere. Write a program to calculate the answer automatically when
you input the data. As a final model, here’s a program to compute gas
mileage when distance and fuel are known:

10 CLS

20 INPUT "DISTANCE TRAVELED";D

30 INPUT "GAS CONSUMED":G

40 MPG=D/G

50 PRINT “"GAS MILEAGE ="MPG;"MGP”

59

60

AREA
CALCULATOR
LESSON 9

Lesson 9: Area Calculator (continued)

10 TOTAL=0

|

20

CLEAR
SCREEN

LENGTH?

30
INPUT [__|
KEYBOARD |— L& W WIDTH?
s | COMPUTE
AREA
60 PRINT - ——--—-4| THIS AREA:
AREA
o | coMPUTE
TOTAL
————— e,
" PRINT | o TOTAL AREA:
TOTAL
‘____——
——————— e
KEYBOARD MORE (Y,N)?
—

Lesson 10: Interest Calculator
ﬁ

Lesson 10: Interest Calculator

Printing Tables and Rounding Off Numbers

Integers: INT(X)

It’s often useful to print charts and tables with your computer. In fact,
that’s the primary function of many business machines that compute
and print tables of financial and statistical information.

In this lesson you will see that this type of computing is very easy to
do. If you have a printer, you can create your own business machine
with little effort. The example we will use is actually quite useful if
you want to know how much money you would earn at a particular
interest rate. You can also calculate and print the effects of
depreciation on your capital.

Whenever you print dollar amounts with your computer, you will have

to round off the figures to the nearest penny. Otherwise, you could
wind up with figures like $12.1302928 instead of simply $12.13.

Load Lesson 10 from the cassette with [C][L][OJ[A]DIM and [E]X][E][C].

Type these eleven instructions into your computer after you see the
title frame. If you would rather enter the program automatically, type

[AI[UJ[T][O] and press [ENTERJ.
10 CLS
20 INPUT “PRINCIPLE™ ($)";T
30 INPUT “"YEARLY INTEREST (%)":1
40 INPUT "NUMBER OF MONTHS";M
50 PRINT
60 PRINT “MO . . INTEREST TOTAL “
70 FOR L=1TO M
80 A=INT(I*T/12+.56)/100
90 T=INT((T+A)*100) /100
100 PRINT LAT

110 NEXT L

61

62

Lesson 10: Interest Calculator (continued)

Run Interest Calculator

To run this program, just type E]@[E and press {[ENTER|. Let’s pretend
that you have $17,000 to invest for nine months and that you can earn
a yearly interest rate of 11.9 percent.

When you see PRINCIPLE ($)? on the screen, type [1][Z][0][0][0] and
press [ENTER]. Notice that you do not use commas when typing in
large numbers. Now type [1J[AJ[L][8] for the yearly interest in percent,
and press again. Select [9] months, press [ENTER], and see

how your $17,000 investment would grow over the next nine months at
11.9% yearly interest rate.

In the first month, you would earn $168.58 interest and your total
assets would be the original investment plus the interest, or $17,168.58.
Now your new assets will earn interest for the second month. Since
you have more capital, your interest for the second month would grow
to $170.26.

You can try another calculation by running the program again. Just
type IE]@@ and press [ENTER]. The program will prompt or remind
you as you enter the data. If you select more than nine months, the
chart won’t fit on your screen. To stop the chart while it’s printing,
press and the [@ key. You can resume printing by pressing
any other key.

How Interest Calculator Works

List your program and look at the flowchart diagram on page 66
to see what the computer does when you run Interest Calculator.

After clearing the screen, the computer inputs your data: principle,
yearly interest, and number of months.

A title is printed for the chart with headings for each column.

The FOR/NEXT loop repeats once for each month. On each cycle, the
program computes the added amount for each month. This income is
rounded off to the nearest penny ($/100). The total is increased by the
income to become the principle for the following month’s calculation.
After the data is printed, the screen scrolls up one line.

If there are any more months to compute, the program loops again. if
not, it stops.

LINE 10 clears the screen.

LINE 20 prints PRINCIPLE ($)? and sets T equal to the number you
input.

Lesson 10: Interest Calculator (continued)
e R O B e R

LINE 30 prints YEARLY INTEREST (%)? and sets | equal to your
input. Notice how the information inside the parentheses tells you
exactly what to type.

LINE 40 prints NUMBER OF MONTHS? and sets M equal to your
input.

LINE 50 prints a space to separate the input data from the chart.

LINE 60 prints a heading for the chart. Lines 50 and 60 make the
interest rate table easier to read and understand.

LINE 70 begins the FOR/NEXT loop. This loop continues until L is
greater than M, the total number of months.

LINE 80 computes the added income for the month and rounds off the
answer to two decimal places.

LINE 90 increases the total by adding the new amount to the previous
total.

LINE 100 completes the FOR/NEXT loop. If L is less than M, the
program loops back to Line 70 where L is increased and the next
month is calculated.

This program works very well as it is and can calculate income from
virtually any investment when yearly interest is known.

Experiment 1: Daily Compounding

If interest is figured every day instead of each month, your investment
will increase faster. The reason is that you won’t have to wait until
the end of the month for your interest to start earning money. The
difference between monthly and daily calculation (or compounding)
isn’t large, but it does change the figures.

Begin this experiment by calculating the total capital when $12000 is
invested for 12 months at 10% interest. Write down the interest and
the total for the final month.

Now change your program so that you will compound the interest
daily. This will be a quick test. We won’t change all the lines in the
program, only the one that actually does the calculation. Here’s the
original instruction:

80 A=INT(I*T/12+.5)/100

Now change this line to calculate daily interest by changing T/12 to
T/365, like this:

80 A=INT(I*T/365+.5) /100

63

Lesson 10: Interest Calculator (continued)
P e T s,

With this change the program computes daily, not monthly, interest.
Run this version and remember that you are actually counting days,
not months. If this change were permanent, we would also change the
printing on the screen. Pretend that MONTHS actually means DAYS
and enter this data:

PRINCIPLE ($)? 12000
YEARLY INTEREST (%)? 10
NUMBER OF MONTHS? 365

When the program prints out the results, you will see the interest for a
complete year, calculated one day at a time. Watch the days go by in
the left column, and see the daily interest grow from $3.29 at the start
to $3.63 per day after 358 days.

If you have written down the previous figures, you will see that this
method of calculating interest actually pays higher dividends. Here
are the comparisons:

Daily compounding: $13,261.52
Monthly compounding: $13,256.55
Difference: $4.97

As you can see, it does make a difference whether your bank or other
savings institution compounds monthly or daily.

If you don’t want to keep a record of this program, go on to the next
experiment. If you wish to save this program on tape and use it
again, please change these lines so that the information on the screen
is accurate:

40 INPUT "NUMBER OF DAYS";:M

60 PRINT "DAY . INTEREST TOTAL “

Experiment 2: Integers

Begin by clearing the computer. Type @E] and press [ENTER|. Now
enter this short program:

10 INPUT N
20 PRINT "NUMBER :";N
30 PRINT “INTEGER:"INT(N)

40 GOTO 10

Now run your program and enter these numbers:

4.44444
2.22222

64

Lesson 10: Interest Calculator (continued)
‘

4.56789
111.8888888
12345.6789

Notice what the computer prints. The integer of a number, INT(X),
is the whole number with any fraction or decimal portion thrown
away. Also notice that the computer rounds off the ninth digit when
printing any number on the screen.

Try some more numbers if you like, and see that the integer is always
the number minus any fractional part.

Experiment 3: Printing Money

When we use the computer to calculate money, we often round off the
answers to the nearest penny. The integer function allows us to round
off a quantity to any number of decimal places we choose.

Press |BREAK] to stop your program, then add this line to your
program to print the number you input to two decimal places:

35 PRINT "MONEY$$:";INT(N+100+.5) /100

Now run the program again, enter these numbers, and see that Line 35
rounds off the answer to the nearest penny. The computer will round
off the second number in the list below because it has more than nine
digits.

123.456789
1000000.666666
1.98765

In Line 35 (and in Lines 80 and 90 of Interest Calculator) the integer
function rounds off the number by first multiplying it by 100, then
adding again. This produces a number that contains no more than two
decimal places and is increased by 0.01 if the third figure to the right
of the decimal point is greater than 1/2 (.5/100 or 0.005).

Experiment 4. Printer Option

If you have a hard copy printer, add these lines and create printed interest
rate tables:

61 PRINT#—-2,"DAY . INTEREST TOTAL ;
101 PRINTH#-2,LLAT

Now the results will be sent to your printer as well as displayed on
the screen.

65

66

Lesson 10: Interest Calculator (continued)

INTEREST
CALCULATOR
LESSON 10

10

CLEAR
SCREEN

20
30

40 INPUT
KEYBOARD _-\l&M /SRR

/

B

PRINCIPLE ($)?
INTEREST (%)?
NO. OF MONTHS?

—— e

MO_ INTEREST_TOTAL_

50 PRINT
60 TEILE
Y
70 LOOP L
COMPUTE
80 ADDED $
90 & TOTAL
PRINT
100 It & T
YES
110
NO

Lesson 11: Coloring Box
e e 1 e e e e e S e W 3 U ol S N e B W e e e S e e N e e e T

Lesson 11: Coloring Box
Graphics: COLOR, SHAPE
Double loops: FOR/FOR, NEXT/NEXT

This lesson illustrates how graphic shapes of several colors may be
placed anywhere on the screen. You will use this feature whenever
you write a program to print a graph, make a drawing, add a border,
or create a video game. You can mix letters and words with colored
shapes to form drawings or charts with text. You will also see how
two FOR/NEXT loops may be combined in a program. This technique
is used in this lesson to fill an area of the screen.

Load Lesson 11 from the cassette with [C][L][OJ[A][DIM and [E]JXI[E][C].

Follow the directions on the title frame for Lesson 11, then enter these
instructions. You can also type @@@ and press [ENTER], and
Computer Learning Lab will enter the program for you.

10 CLS

20 INPUT “"COLOR (1-8)".C
30 INPUT “SHAPE (0-15)";S
40 A=128+(C-1)*16+S

50 PRINT @50,CHRS$(A)

60 FOR Y=4 TO 13

70 FOR X=bTO 26

80 PRINT @Y*32+X.CHRS$(A)
90 NEXT X:NEXT Y

100 INPUT "MORE (Y.N)":K'$

110 IF K$="Y" GOTO 10

Run Coloring Box

The program begins by asking you to select one of eight colors. Type
any number from one to eight and press [ENTER].

Now the program is requesting a number for the shape. There are 16
separate graphic shapes you can print on the screen. These shapes
are numbered 0-15. Select [9] to print a pattern of small squares.

67

Lesson 11: Coloring Box (continued)

“

When you press [ENTER], the computer prints a single graphic
character in the shape and color you’ve selected. Then this same
character is printed over and over again to fill a large square on the
screen. This shows you what that character looks like when printed
alone and when it is used to cover a large area.

To see another combination of color and shape, type and press

[ENTER]. Now enter two numbers as before, pressing after
each one. Try several combinations to see what all the shapes and
colors look like. You will find that shape number zero always prints a
black block, and that shape number 15 is a block of the color you've
selected. In the experiments section you will see how to write
programs like this and print colored graphic characters anywhere on
the screen.

How Coloring Box Works

Stop your program by selecting [N]. Now type m@ and press
to list it on the screen. Compare the flowchart with the
instructions and see what the computer is doing when you run this
program.

When the program begins it clears the screen. Then you are asked to
input numbers for the color and shape of a graphic character. Each
graphic character is plotted on the screen with CHR$(N), where N is
the number of your character. A sample is printed near the top of the
screen, so you can see what a single character looks like.

Using loop X, the character you’'ve selected is printed in a horizontal
row that is 22 characters wide. Then, using loop Y, this row is
repeated 10 times to fill a square. When you run the program, you can
see the computer filling each row.

After all rows are filled, the program asks if you would like to see
more. Answer with Y and the program repeats. Any other answer
will stop the program.

LINE 10 clears the screen.

LINE 20 prints COLOR (1-8)? and sets the variable C to the number
you enter.

LINE 30 prints SHAPE (O-15)? and sets the variable S to the number
you enter.

LINE 40 is a formula that sets A equal to the number of the graphic
character you specified with C and S. This instruction can be used in
any program to print a color and shape.

68

Lesson 11: Coloring Box (continued)
—

LINE 50 prints character number A at location number 50. This
location is near the top of the screen (see diagram). The symbol
CHR$(A) is used to print the character whose number is A.

LINE 60 begins loop Y. This loop prints from line 4 to line 13.

LINE 70 begins loop X. This loop prints from column 5 to column 286.
In this program, two loops are used. As X goes from 5 to 26, a
horizontal row is printed. As Y goes from 4 to 13, this row is repeated
10 times to fill the square.

LINE 80 prints graphic character number A at the position specified
by X and Y. As shown in the diagram, the expression Y*32+X converts
X and Y to a position number.

LINE 90 completes both loops. Notice that loop X moves the character
from left to right. Each time this loop is finished, loop Y moves down
one line, and the process repeats. After both loops are complete, the
area on the screen is filled and the program continues with Line 100.

LINE 100 asks: MORE (Y,N)?. Type and the program repeats.

These experiments show you more about printing colors and shapes,
using the CHR$(N) command. You will also see how to locate any
position on the screen.

Experiment 1: The Cast of Characters

Clear your program from the computer’s memory by typing EHE
and pressing [ENTER|. Now enter this program, and don’t forget to
press [ENTER| after each instruction:

10 CLS

20 FOR A=32 TO 255
‘30 PRINT CHR$(A);
40 NEXT A

Now type [LI[1][SI[T] and press [ENTER]. Check each instruction and
see that there are no errors. Run the program as before. The
computer prints all the characters from 32 to 255 on the screen. As
you can see, these characters include the symbols, letters of the
alphabet, and shapes in all eight colors. To print any one of these
graphic characters, use CHR$(A), where A is the number of the
character, like this:

PRINT CHR$(249)

69

Lesson 11: Coloring Box (continued)

h

When you press |ENTER|, this instruction prints shape number 9 in
color number 8.

Experiment 2: Character Numbers

This experiment shows how to find the character number when you
know the color and shape you want. A formula for finding the number
was used in Line 40 of Coloring Box. You entered numbers for color

C and shape S. The computer calculated the character number A with
this instruction in Line 40:

A=128+(C-1)«16+S

Let your computer do the arithmetic. Type these instructions and
print the answer. Remember to press after each instruction.
You will not use line numbers, instead, the computer will follow each
instruction when you press .

C=8
S=9
PRINT 128+(C-1)«16+S

The computer printed 249, the character number for shape 9 and color
8. Now print the graphic character number 249 with this instruction:

PRINT CHR$(249)

Experiment 3: Screen Position

Now that you can print anything you want, learn how to position a
character or letter anywhere on the screen. There are 512 positions to
choose from. The screen is 32 columns wide and 16 rows high. Notice
that the top row and the column on the left are both numbered zero.
To find the number of the third row, for example, count: 0, 1, 2.

Another way to find a position number is to use the formula from
Coloring Box, Line 80. If X and Y are the column and row, the
position number is 32+Y+X. If it is easier for you to find the position
you want by looking at the chart, use that method. If you would rather
decide on a column and row, use the formula.

In Coloring Box we printed the graphic character in the 19th space of
the second row (Line 50). Find this position on the chart and read its
number. Or use the formula with Y=1(second row) and X=18 (19th
column). Remember that the row and column numbers start with zero,
not one.

Y=1
X=18
PRINT 32+Y+X

70

Lesson 11: Coloring Box (continued)
“

Either way, using the position number or the formula, you should get
the same answer: 50. To print a character at position 50, use this
instruction:

PRINT @50.CHR$(249)

71

Lesson 11: Coloring Box (continued)

COLORING
BOX
LESSON 11

10 CLEAR
SCREEN

COLOR?
20 INPUT SHAPE?
KEYBOARD COLOR, Errmmes
30 SHAPE
COMPUTE
40 | CHARACTER
NUMBER
| COLOR _
0 SAMPLE 7
v
60 LOOP Y
70 LOOP X
COLOR
80 | CHARACTER [~~~ i E

90

INPUT K$

MORE (Y,N)?

KEYBOARD

Lesson 12: Time Machine

e e e e e s e

Lesson 12: Time Machine
Time Delay

Comparison: Not Equal < >

If you’ve been wanting a digital stop watch, this program will create
one. It prints the hours, minutes, and seconds on the screen and
updates the display ten times each second.

You will see how to create a time delay that causes a program to
pause for a specific length of time. The PRINT@ command is used to
print the data on the screen so that the words stay in place while the
numbers change. The space bar is used to stop the program and the
clock.

Load Lesson 12 with @@@M and [EIE Then enter the
program or use the [A]J[U][T][0] feature.

10 H=0:M=0:S=0

20 CLS

30 S=S+1

40 IF S=600 THEN S=0:M=M+1
50 IF M=60 THEN M=0:H=H+1
60 PRINT @0, "HOURS ";H
70 PRINT "MINUTES":M

80 PRINT "SECONDS";:S/10:”
90 FORT=1TO 19:NEXT T

100 IF INKEY$<>"" GOTO 30

Run Time Machine

This program couldn’t be easier to operate. Just type E]IE[E] and press
[ENTER]. The computer sets the time to zero and starts counting the tenths
of seconds. After sixty seconds, the number of minutes increases by 1

and the number of seconds starts over again at zero. If you wait for

an hour, you will see the hours increase by 1 and the minutes and

seconds both return to zero.

After a minute or two, press the space bar and stop the program. You
can begin counting again by typing [RI[U][N] and pressing [ENTER].
Doing this starts the program over from the beginning with the hours,
minutes, and seconds each set to zero.

73

Lesson 12: Time Machine (continued)
_—
How Time Machine Works

In this section you will see how the computer is programmed to create
a clock. Stop your program now by pressing the space bar. Type

[CI[Q(SI[T] and press [ENTER] to list the program on the screen.

The flowchart diagram on page 78 shows what the computer is

doing as the program runs. Notice that the program loops or repeats
constantly until the space bar is pressed. Each time the program
loops, 0.1 seconds are added to the clock and the time is printed on the
screen. When the program begins, the computer sets the hours,
minutes, and seconds to zero. Then the screen is cleared. In the next
step, 0.1 second is added to the clock. If 60 seconds have passed, one
minute is added to the clock. If 60 minutes have passed, one hour is
added to the clock. (Remember that 60 minutes is 600 1/10 seconds, the
speed of your clock.)

In the next step, all data is printed on the screen. Previous times are
erased as new times are printed. The words HOURS, MINUTES, and
SECONDS appear to stay the same because they are printed over and
over again in the same place on the screen.

The time delay in Line 90 causes a brief pause so that the computer
takes one-tenth of a second to do all the instructions inside the loop.
Each time the program loops, the computer checks the keyboard to see
if the space bar is pressed. If so, the program ends. If not, it loops
back to Line 30 to add 0.1 second to the clock and continue keeping
time.

LINE 10 sets the variables H, M, and S to zero. These letters are used
in this program to represent the number of hours, minutes, and tenths
of a second that have passed. Each time the program is run the hours,
minutes, and seconds start at zero.

LINE 20 clears the screen.

LINE 30 adds 1 to the variable S. This letter represents the tenths of
seconds that are shown on the screen. When S equals 1, one-tenth of a
second has passed. If S=10, one second has passed. If S=100, ten
seconds have passed.

LINE 40 checks to see if one minute has passed. Since the variable S
is increasing ten times each second, a minute is up whenS=600. If
S=600 now, the computer resets S to zero and adds 1 to M. If S is not
equal to 600, the computer skips Line 40 entirely and goes to the next
line in the program.

LINE 50 checks the variable M to see if sixty minutes have passed. If
M=60 then the computer sets the minutes to zero and adds 1 to the
hours, H. If M does not equal 60, the computer skips Line 50.

74

Lesson 12: Time Machine (continued)
e e R R A SRR SR e S L e e T T B S e e e e e S N e S T e S N L i O S A e

LINE 60 prints HOURS, followed by two spaces, and then prints the
value of H. The three spaces after the word are added so that the
numbers of hours, minutes, and seconds will line up on the screen.

The symbol @ after the word PRINT tells the computer to print at a
particular location on the screen. PRINT @O means print at location
zero, which is on the left at the top of the screen.

LINE 70 prints MINUTES and the value of M. This line is printed
directly under the previous line.

LINE 80 prints SECONDS and the number of seconds. Remember that
the variable S is incrementing (counting) ten times each second. To
print the number of seconds, the computer divides the value of S by 10.

After printing the number of seconds, the program prints two spaces
*“ . This erases any previous numbers that were left on the screen.
For example, when the clock goes from 59.9 seconds to 0 seconds, the
two blank spaces erase the .9 portion of the number.

LINE 90 creates the time delay. This instruction tells the computer to
count from 1 to 19 before going to the next line in the program. The
number 19 is chosen so that the entire program will loop or repeat ten
times each second.

Remember that 0.1 second is added to the clock each time the program
loops. With a number that is larger than 19, the computer would take
longer and the clock would run too slowly. Similarly, counting to a
number that is smaller than 19 would take less time, and the clock on
the screen would run too fast.

LINE 100 checks to see if the space bar is pressed. If you don’t press
the space bar, the program goes back to Line 30 and repeats. When
you press the space bar, the program stops.

The computer symbol for the keyboard is INKEY$ and if this is not
equal to a space ““ ’, the computer goes to Line 30. These two symbols
<> mean “not equal to” and are used here to branch to Line 30 if the
space bar is not pressed. If the space bar has been pressed, then
INKEY$="". In this case, the computer skips the instruction in Line
100, and the program stops.

You can add or change instructions and modify Time Machine in
many ways. Here are a few ideas you might wish to try:

Experiment 1: Tick, Tick, Tick

Since most clocks make noise, you may wish to add a ticking sound as
the clock runs. Stop the program and add this new instruction:

35 IF S=INT(S/10)+*10 THEN SOUND 235.1

75

Lesson 12: Time Machine (continued)
_

Type II][E]E] and press [ENTER| to see the complete program with

your addition. Now type [E@][E press [ENTER|, and adjust your TV
volume to hear the beep.

Line 35 adds a “BEEP” to the clock every second. To do this, the
program uses the integer (INT) function to see if S is a number that
can be divided evenly by ten, such as 10, 20, 30, etc. If S is a multiple
of ten, then one full second has passed, and a sound is played.

Experiment 2: Timing Accuracy

The addition of a ticking sound will change the accuracy of your clock and
make it run slower. You can adjust the delay loop in Line 90 so that the
clock will run at the correct speed.

Type [LIMSITI[IMOI[0] and press [ENTER] to see the present Line 90.

To make the clock run faster, use a smaller value for the number 19 in
this line:

90 FOR T=1 TO 19:NEXT T

You may have to try several values to get your clock to keep accurate
time.

Experiment 3: Alarm Clock

Now change the program to create an alarm clock. There are several
ways to do this. You might start by deciding how long the clock
should run before the alarm sounds. Then use an IF statement to
check and see whether or not the time is up.

For example, you could add an instruction to make a buzz after a
certain length of time. Stop your program and add this line:

85 IF M=3 THEN SOUND 20,20:END

When you run the new program, you will hear a buzz as soon as three
minutes are up.

Experiment 4: Timer

You could set the alarm clock by using a variable (such as the letter A
for alarm) instead of the number three in Line 85. At the beginning of
the program, input a value for the variable so that you can set the
alarm for any number of minutes you choose. Stop your program
again and add these two lines:

15 INPUT "HOW MANY MINUTES ;A

85 IF M=A THEN SOUND 20,20:END

76

Lesson 12: Time Machine (continued)
G e R T

When you run this version of your program it will ask you how many
minutes you wish. Enter a number and wait that many minutes to
hear the result.

If you have a precise sequence of events such as developing photo-
graphs or doing yoga, you might wish to make a multiple alarm
clock that alerts you with tones at specific intervals. Just add as
many IF conditions as you wish, with a sound for each one.

Experiment 5: Stop Watch

Here’s one final idea to create a start/stop option for your program. Add
the following lines; then use the space bar to stop, the G key to go,
and the [R] key to reset the time to zero.

After you press the space bar, the program will wait for you to press
[G] or [R] before proceeding.

110 K$=INKEY$
120 IF K$="G" GOTO 30
130 IF K$="R” GOTO 10
140 GOTO 110
Line 110 sets the variable K$ to the letter typed on the keyboard. If

this letter is G or R, the clock resets. If not, the program returns to
Line 110 to get another key from the keyboard.

77

Lesson 12: Time Machine (continued)
R R e |

TIME
MACHINE
LESSON 12

SET HOURS MINUTES
10 AND SECONDS
TO ZERO
- CLEAR
SCREEN
0 ADD .1
SECONDS
60 ADD
40 SECONDS ONE MINUTE
© o ADD
M[NETES ONE HOUR
€0 HOURS 0
0 rjrl}IIv[NET L —————=4| MINUTES 0
80 SECONDS 0
TIME
90 DELAY

INPUT
KEYBOARD

KEYBOARD

78

Lesson 13: Probability

Lesson 13: Probability

Random Numbers and Probability Curves

In this lesson you will use the computer to simulate random events.
Randomness is often used in designing computer games and for
creating patterns in music and art.

You will begin by writing a short program to print random numbers
from 1 to 6, like a six-sided die. This programming technique can also
be used to create random dice with any number of sides, or possible
combinations. Each experiment will add a section to your program
and add a feature, such as storing the results or printing a graph.

The final program is recorded on the Lesson 13 cassette. This
computer model of two dice displays a graph showing how often each
combination is rolled.

Experiment 1: Random Numbers

The easiest way to understand random numbers is to try an experiment.
Type this instruction into your computer:

PRINT RND(6)

When you press [ENTER], the computer prints a number between 1 and
6. This number is selected by chance and could be a 1, 2, 3, 4, 5, or 6.
If you type this instruction many times, you will eventually see each
of these numbers printed on the screen.

Experiment 2: Write a Program

An easier way to print random numbers is to write a short program.
Type E"El and press [ENTER] to clear the computer of any other
programs or data. Type these instructions and press |[ENTER| after

each one.
110 A=RND (6)
120 PRINT A

130 GOTO 110

Type RI[UJ[N] and press to run your program. The computer will
set the variable A equal to a random number from 1 to 6. Then the
computer will print the value of A on the screen. As the computer

adds new numbers at the bottom of the screen, the printing will move

up.

79

Lesson 13: Probability (continued)

_

Press [BREAK] to stop the program. Then type [L][1J[S][T] and press
[ENTER] to list it on the screen, like this:

110 A=RND (6)
120 PRINT A
130 GOTO 110

The random function in Line 110 may be changed to create numbers
between 1 and any positive number you select. You can also use this
function to create random numbers between 0 and 1. Here are some of
the ways you can change Line 110 to print different sets of random
numbers, with the result shown to the right of the instruction:

110 A=RND(10) numbers from 1 to 10.
110 A=RND(100) numbers from 1 to 100.
110 A=BRND(2)-1 numbers that are 0 or 1.

110 A=RND(0) numbers from 0 to 1.

To see what each of these changes do, just type the new line and press
ENTER] to change the program, and then run it.

Experiment 3: Dice Simulation

This program simulates a pair of dice by creating two random numbers
between 1 and 6, adding them together, and printing the result. Type
each of these instructions:

110 A=RND(6)
120 B=RND(6)
130 PRINT A+B;
140 GOTO 110

Run your program. The computer will fill the screen with numbers from
2 to 12. You can stop the printing on the screen by pressing [SHIFT]
and [@]. Press any key to start the printing again.

Notice that the numbers 6, 7, and 8 come up very often and that the
numbers 2 and 12 are seldom printed. As with real dice, this computer
simulation will roll a 7 much more often than a 2 or 12. This is
because there are several combinations of two dice that will total 7
(6+1, 5+2, 4+3, 3+4, 2+5, and 1+6). There is only one combination that
will total 2 (1+1) or 12 (6+6).

80

Lesson 13: Probability (continued)

Experiment 4. Store and Print the Results

To keep a total of the results and see which combinations of two dice
come up more often, store the numbers in an array with these
instructions:

20 DIMX(12)
140 X(A+B)=X(A+B)+1

Line 20 dimensions an array to hold 13 numbers. They are X(0), X(1),
X(2), and soon up to X(12). Line 140 adds 1 to a number in the array to
record how often each total is rolled. If the total is 2, for example,

the number in X(2) is increased. If the total is 4, then X(4) is increased.

These next two instructions create a FOR/NEXT loop that cycles 200
times. With this loop, the computer will roll the dice 200 times,
storing the results of each roll in the array.

90 FOR N=1TO 200

290 NEXT N

These last four instructions clear the screen and print the numbers
stored in the array. As N cycles from 2 to 12, the computer will print
N and the value of X(N).

300 CLS

310 FOR L=2T0O 12
320 PRINT L, X(L)
330 NEXT L

Type LIM[SIT] to see your program on the screen. Here is how your
complete program should look. If you see any errors, just enter the
line again, using the same line number, to replace it.

20 DIMX(12)

90 FOR N=1 TO 200
110 A=RND(6)

120 B=RND(6)

130 PRINT A+B;

140 X(A+B)=X(A+B)+1
290 NEXT N

300 CLS

310 FOR L=2 TO 12
320 PRINT L.X(L)
330 NEXT L

81

Lesson 13: Probability (continued)

_

Run this version of the program. You will see the total for each throw
on the screen as the computer rolls the dice 200 times. Then the
results are displayed with the totals on the left, with the number of
times each total was rolled. Your results will vary, but the screen
should show something similar to this:

5

20
12
24
18
39
29
23
13
11
6

= =2 2 O ONOOODWN

N —= O

In the example shown above, “snake eyes” came up 5 times and “boxcars”
came up 6 times. The number 7 came up most often: 39 times. Run
your own experiment several times and see your results.

Experiment 5: Watch the Action

With these two lines you can add a continuous printout that shows
the results of each roll:

30 CLS1
220 PRINT @64,” DIE 1=";A;" DIE 2=";B;” TOTAL=";A+B

Line 30 clears the screen. Line 200 prints the score. The @ symbol means
to print at a particular location. PRINT @64 is used to print at
location 64, the beginning of the second line on the screen.

Type m@@ and press |[ENTER| to delete Line 130.

When you run this program you will see a scoreboard with DIE 1,
DIE 2 and their TOTAL printed on the second line of your screen.
After 200 rolls, the results are displayed as before.

Experiment 6: Count the Rolls

Add a new variable R to keep track of the number of rolls with these
two instructions:

10 R=0
130 R=R+1
230 PRINT © NUMBER OF ROLLS=";R

82

Lesson 13: Probability (continued)
e e e O e e e S e S e [B e e ey e i e e e e e e e e e T T e e e

There is no important reason for keeping track of this number; it simply
makes the scoreboard more fun to watch. Line 10 sets R to O when the
program starts. Line 130 adds 1 to R each time the dice are tossed.
Line 230 prints the results on the third line on the screen. Run the
program and see a complete scoreboard.

Experiment 7: Plot a Graph

This change in the program will replace the section that printed the
array with a section that prints a graph of the results. Add this line to
print a dot on the screen for each roll. Type carefully; we will explain
how this works later.

310 PRINT @(A+B+2)+32+X(A+B)+2,CHR$(142)

Now change the program loop. Instead of using the FOR/NEXT loop in
Lines 90 and 290, the program will use a conditional branch in Line
320. With the FOR/NEXT loop, the program cycled 200 times. The
branching instruction in Line 320 checks to see if our graph has
reached the right edge of the screen. If it has not, the program loops
back to Line 100 to roll the dice again. Instead of rolling the dice 200
times, the program will now roll the dice until the graph fills the
screen.

Remove these lines by entering their line numbers, pressing [ENTER
after each one:

90
290
300

330

Then change Line 320 to form a loop that goes back to Line 110 if the graph
is less than 28 units wide.

320 IF X(A+B)<28 GOTO 110

Here is how the complete program should now look. List your program
and check these lines carefully:

10 R=0

20 DIMX(12)

30 CLS1

110 A=RND(6)

120 B=RND(6)

130 R=R+1

140 X(A+B)=X(A+B)+1

83

Lesson 13: Probability (continued)
_

220 PRINT @64.,” DIE 1="A;" DIE
2=";B:" TOTAL=":A+B

230 PRINT © NUMBER OF ROLLS=";R
310 PRINT @(A+B+2)«32+X(A+B)+2,C
HR$(142)

320 IF X(A+B)<28 GOTO 110

When you run this version of the program, you will see the scoreboard
at the top of the screen and a graph of the results. With each roll of
the dice, the computer prints a dot on the screen. Notice that the dots
in the middle rows add up faster. When any row contains 28 dots, the
program stops.

Experiment 8: Format the Screen

As you might have guessed, the rows of dots correspond to the
possible totals for the two dice. With these instructions you will add a
title at the top and a row of numbers from 2 to 12 along the left edge of
the screen to label each row.

40 PRINT:PRINT “ ... PROBABILITY CURVE . . .”
50 PRINT:PRINT
60 FOR N=2 TO 12:PRINT N:NEXT N

330 GOTO 330

Line 330 goes to Line 330. This is not a mistake; this special instruction
creates a hold in the program by repeating Line 330 over and over
again. The program stays in this holding pattern on Line 330 until

you press . The reason for this line is to avoid having the
program stop after the graph is printed. This avoids the “OK” signal
and flashing cursor on the screen.

Now run the complete program and see the computer simulate rolling
two dice, with a continuous readout of the results. Compare the shape
of the graph with a curve. While the probability of rolling a 7 is the
highest, not all runs of this experiment will show row number 7 as the
longest. When you wish to stop the program, press [BREAK].

For a complete listing of the program, see the next experiment.

Experiment 9: Probability

The program for this experiment is recorded on the Lesson 13 cassette.
You can load this program from the cassette using [C][L][O][Al[D], or
enter it yourself, following the experiments in this lesson.

84

Lesson 13: Probability (continued)

—

When you run Probability you will see a computer simulation of two
dice. With each roll, the computer prints the value for each die, their
total, and the number of rolls so far. For each roll, the computer
prints a dot on the graph, indicating which totals come up most often.
To see how many times the dice total 3, for example, just count the
dots in row 3. When any row has totaled 28 dots, the program goes
into a holding pattern. To stop the program, press [BREAK].

Here is a complete listing of the program. Remarks in Lines 1, 100,
200, and 300 are used to make the program easier to read and understand.
The listing shows spaces between groups of instructions to help you
see how each section works.

1REM ... PROBABILITY . ..
10 R=0

20 DIMX(12)

30 CLS 1

40 PRINT:PRINT ~ ... PROBABILI
TY CURVE . . .”
50 PRINT:PRINT
60 FOR N=2 TO 12:PRINT N:NEXT N

100 REM ... ROLL DICE . ..
110 A=RND(6)

120 B=RND(6)

130 R=R+1

140 X(A+B)=X(A+B)+1

200 REM ... PRINT SCORE . ..

220 PRINT@64. “ DIE 1="A;" DIE 2
="B;” TOTAL=":A+B

230 PRINT "NUMBER OF ROLLS=";R

300 REM ... PLOT GRAPH . ..
310 PRINT@(A+B+2)*32+X(A+B)+2.CH
R$(142)

320 IF X(A+B)<28 GOTO 100

330 GOTO 330

How It Works

Look at the flowchart diagram on page 88 and see how the seven
sections of this program work together in creating the final result.
To see the program instructions in each section, type m@ and
the lines you wish to see on the screen. For example, type

LIMESITONAIEIEI0] and the computer will list the first four lines of

the program.

85

Lesson 13: Probability (continued)
B A . L e e 0 G S e s B 5 e TR A S R e S i T e R DY T

LINES 1-30 initialize the program by setting the variable R to O,
dimensioning the array X to hold 13 numbers, and clearing the screen.

LINES 40-60 format the screen. These instructions print the title at
the top, skip two lines, and print the numbers 2 through 12 along the
left edge.

LINES 100-140 use the random function to simulate two dice. The
variables A and B are set to a random number from 1 to 6. The
number of rolls, R, is increased by 1. One of the locations in array X
is increased. If A+B is 7, location X(7) is increased.

These instructions are repeated for each roll of the dice.

LINES 200-230 print the score board. At location 64 (the beginning
of the second line on the screen) the computer prints DIE 1 and the
value of A, DIE 2 and the value of B, and TOTAL followed by the value
of A+B. On the next line, NUMBER OF ROLLS is printed, followed by
the value of R.

LINES 300-310 plot the graph. To see how Line 310 works, type this
instruction:

PRINT @90.CHR$(142)

Notice that this instruction has no line number and will not be added to
the program. When you press [ENTER], the computer will print a black
dot near the top-right corner of your screen. This location is number
90 and CHR $(14 2) is the graphics character you see on the screen.

LINE 310 uses the expression (A+B+2)*32+X(A+B)+2 to position the
dot on the screen. This expression is a programming module that you
can use to position letters or numbers anywhere you like.

LINE 320 checks to see if the number of dots in the line is larger than
28. If not, the program goes back to Line 110 for another roll of the
dice. If there are 28 dots, the program goes to the next instruction.
The number 28 was picked because that many dots fill the screen

LINE 330 creates a holding pattern by repeating over and over. This
prevents the “OK” and the flashing cursor that normally appear when
a program is finished. To stop the program, press [BREAK].

86

Lesson 13: Probability (continued)

Experiment 10: Musical Dice

If you would like sound effects, add this instruction to your program:
315 SOUND (A+B)*10,1

The computer will play a note for each dot added to the graph. This
slows down the program but adds a nice feature.

87

Lesson 13: Probability (continued)

PROBABILITY
10- START
30
; ...PROBABILITY CURVE ...
40- FORMAT
60 SCREEN
\ i
100~ ROLL
140 DICE
200' PRINT DIE 1=6 DIE 2=3 TOTAL=9
230 SCORE NUMBER OF ROLLS=2
300- PLOT | |
310 GRAPH
320
YES MORE
?
NO
330
88

Lesson 14: Sorting

Lesson 14: Sorting

Arrays and Data Processing Techniques

Computers used as business machines are frequently programmed to
sort information. Data must often be organized in a particular way,
and several kinds of sorting programs may be used to do this. A
mailing list, for example, might be sorted by alphabetical order to find
people quickly by name. This same information could also be sorted
by zip code and organized by location. The method used could also
vary, with some sorting programs operating faster under certain
circumstances than others.

This program shows you how the computer sorts data. At first,
numbers in an array will be put in numerical sequence. The final
experiments show how you can arrange data in alphabetical,
numerical, and even graphical order.

Experiment 1: Pick 10 Numbers

Begin by typing [NJ[EIM to clear your computer of any previous
programs. Then enter these instructions to create an array and fill it
with five random numbers:

10 DIM S§(10)
20FOR L=1TO 10
30 S(L)=RND(50)
40 NEXT L

This array is named S and contains ten locations that can store
numbers: S(1), S(2), S(3), S(4), S(5), S(6), S(7), S(8), S(9), and S(10).
To see what numbers are stored in these locations, add these
instructions:

50 FOR L=1TO 10
60 PRINT S(L)
70 NEXT L

Now your program will create an array, fill it with ten random numbers,
and print the contents of the array. Run the program and compare

your results with the following numbers. The numbers picked for

your array will almost certainly be different, but you should see ten
numbers between 1 and 50, like this:

42
6
30

Lesson 14: Sorting (continued)

_I—

17
21
4
18
31
41
22
OK

Experiment 2: Pick the Smallest Number

You can find the smallest number in the array by checking it and
comparing it with a new variable, X. Add these instructions to find
the smallest number in the array and set X equal to that number:

80 X=560

90 FOR L=1TO 10

100 IF S(L)<X THEN X=S(L)
110 NEXT L

120 PRINT “"THE SMALLEST NUMBER IS
X

First the variable X is set equal to 50. Then X is compared with each
number in the array. If any number is smaller than X, then X is set
equal to that number. After the complete array has been checked, the
smallest number is printed.

Here is the complete program. Spaces have been added between
sections to match the flowchart in Figure 1 (on page 100). Type
IIllE and check your program against this listing. Also compare
this listing with the flowchart and see how the three sections of your
program work together to produce the printout on the screen.

10 DIM S(10)
20FOR L=1T0O 10
30 S(L)=RND(50)
40 NEXT L

50 FOR L=1TO 10
60 PRINT S(L)
70 NEXT L

90

Lesson 14: Sorting (continued)

80 X=50

90 FORL=1TO 10

100 IF S(L)<X THEN X=S(L)

110 NEXT L

120 PRINT "THE SMALLEST NUMBER
IS”: X

Run the program. You will see ten random numbers with the smallest
number printed at the end, like this:

14
5
21
43
32
26
40
83
2
15
THE SMALLEST NUMBER IS 2
OK

Your numbers will be different, but the format should look the same,
with the smallest number selected and printed at the end. Run this

program several times, if you like, and see that the smallest number is
always selected and printed.

Experiment 3: Smallest Numbers First

Now change the last section of the program, Lines 80-120, to place
the smallest numbers first. Your new program will examine each
position in the array. If the number being checked is larger than any
number in the array, the numbers change places, putting the smallest
number first.

Remove Line 80 because it is no longer needed, and replace the last
section of the program with these instructions:

80

90 FOR L=1TO 9

100 IF S(L)<S(L+1) GOTO 140
110 T=S(L)

120 S(L)=S(L+1)

130 S(L+1)=T

140 NEXT L

91

Lesson 14: Sorting (continued)

—

Run the new program and print the array. Now enter GOTO 50 and run
the program again, starting at Line 50. Notice that the smaller
numbers have moved up in the display and that the larger numbers
have moved down. Enter GOTO 50 several more times. Each time you
run the program from Line 50 the numbers in the listing will change
places to put the smaller numbers first. After running the program
several times, you will see that the numbers are in numerical order.

How It Works

When you run the program from Line 50 the computer will print the
array and then compare each number, S(L), with the number that
comes next in the array,S(L+1). If S(L) is the smaller, the computer
goes to Line 140 to compare the next numbers in the array. If S(L) is
not the smaller, the numbers in S(L) and S(L+1) are exchanged.

The variable T is used to temporarily hold the number in S(L) while
the swap is being made. Here are the steps:

1. The numberin S(L) is storedinT.
2. The number in S(L+1) is moved to S(L).

3. The number stored in T is moved toS(L+1).

Experiment 4: Before and After

In these next two experiments you will write a program that repeats
automatically to completely sort the numbers in the array. You can
enter this program yourself, or skip to Experiment 6 and load the final
program from the Lesson 14 cassette.

The program begins with an input section which lets you decide the
range of numbers used in selecting the random numbers for the array.
Then the array is filled and printed on the screen.

The sorting section uses two program loops to place all numbers in
sequence, starting with the smallest numbers. After the sorting

process, the last section prints the array.

Enter [NJ[E]JW to erase the previous program and enter these
instructions:

10 REM SORTING . ..
20 CLS
30 INPUT "START".S

40 INPUT "END";E

92

Lesson 14: Sorting (continued)
—

50 INPUT "NUMBER";N

60 DIM S(N)

100 REM . .. FILL ARRAY . ..
110 FORL=1 TO N

120 S(L)=S+RND(E-S+1)-1
130 NEXT L

140 PRINT “"RANDOM:”
150 GOSUB 400

200 REM ... SORT ARRAY . ..
210 FORA=1TO N-1

220 SOUND 200.1

230 FOR B=A+1 TO N

240 IF S(A)<S(B) GOTO 280
250 T=S(A)

260 S(A)=S(B)

270 S(B)=T

280 NEXT B:NEXT A

290 PRINT:PRINT “SORTED:"
300 GOSUB 400

310 END

400 REM . . . PRINTOUT . ..
410 FOR L=1TO N

420 PRINT S(L);

430 NEXT L

440 RETURN

93

Lesson 14: Sorting (continued)

I-----T-----------------------------------

Run this program and input starting and ending numbers for selecting
the random numbers to fill the array. To begin, try @@[E]E]m
and [EJ[NIDIE][8] to fill the array with numbers between 1 and 9. The
final question asks how many numbers you wish to put in the array.
Try @@E@E@@ to select 30 random numbers. After
printing these numbers, the program sorts the array in numerical
order. Adjust the volume to beep as each position in the array is
filled. When the sorting is complete, the printout will show these
same 30 numbers sorted in numerical sequence, like this:

START? 1

END? 9

NUMBER? 30

RANDOM:
493556622¢629
49293213479
192994283

SORTED:
1122222333
3444450566 6
89 9168 9998 8

OK

Run the program again and select a new range of numbers to sort. You
can request any range you like. Try 32 numbers between 10 and 99 to
create a printout like this:

START? 10

END ? 99

NUMBER ? 32

RANDOM:

17 16 67 18 75 29 83 29
12 52 43 54 14 98 30 76
93 89 97 87 98 /2 73 7l
43 53 56 72 42 15 85 31

SORTED:

12 14 15 16 17 18 29 29
30 31 39 42 43 43 52 53
53 54 56 67 67 71 72 72
78 75 76 883 93 98

OK

Experiment 5: Dynamic Sorting

With the addition of these instructions, the program will show you the
sorting process while it is happening. In this way, you will be able to
see exactly how the computer compares each position with the rest of
the array and exchanges numbers to place lower numbers first.

94

Lesson 14: Sorting (continued)
L.__) |

Remove Lines 140, 290, and 300 from the program, then add three new
printing instructions. These printing commands tell the computer to
print characters on the screen. These characters are the numbers,
letters, punctuation marks, and graphics symbols represented by their
ASCII numbers.

140
290
300
275 PRINT @127+A.CHR$(S(A));
277 PRINT @127+B.CHRS$(S(B));

420 PRINT @127+L.CHRS$(S(L));

The final program listing is shown at the end of this lesson, along
with a complete flowchart in Figure 3 on page 102. When you run this
program, use numbers that match ASCII values. Any numbers
between 36 and 255 may now be used for START and END. Numbers
lower than 36 are blanks, and will not show on the screen. Higher
numbers than 255 are not used for graphics characters and will cause
an error in Line 420.

How It Works

The flowchart in Figure 2 on page 101 shows three program sections
and a subroutine for printing the array. These units in the flowchart
work together to display a random and a sorted array.

The input section assigns values to the variables S, E, and N, and
dimensions the array. Each position in the array is filled with a
random number between S and E. The subroutine at Line 400 is used
to print the random numbers.

In the last section, numbers are arranged in sequence, starting with
the smallest. Two program loops are used. Loop A begins with the
first position and compares all following positions in the array. If
any smaller numbers are found, the numbers are reversed so that the
smaller number is in the first position. Then the next position is
compared with all the rest of the array to see if any numbers are
smaller. If so, they are reversed as before, putting the next smallest
number in position two.

This process continues until loop A has compared all positions and
the numbers are in sequence. This is very much like the previous
experiment, with the computer continuing the comparison until the
process is complete. The printout subroutine is used again in Line 290
to print the results.

95

Lesson 14: Sorting (continued)

_

Experiment 6: Sorting

This program is recorded on the Lesson 14 cassette. You can load
the program from the cassette or enter it yourself, as described in
Experiments 4 and 5.

Run the program and begin by entering numbers for START, END,
and NUMBER. As a suggestion, try these inputs:

START? 48
END? 67
NUMBER? 32

The computer will load an array with 32 random numbers between 48
and 57. These are the ASCII numbers associated with 0, 1, 2, 3, 4, 5,
6,7, 8, and 9.

Watch your screen as the computer sorts these numbers in sequence,
starting with the first position and filling it with the lowest number in
the array. Notice that the computer moves from one position to the
next, filling each position with the lowest number available. Adjust
your TV speaker to hear the beeps as each position is filled. After all
positions have been checked and adjusted, the program stops with the
numbers in perfect sequence.

You can also try sorting letters of the alphabet with these inputs:

START? 65
END ? 90
NUMBER ? 128

With these instructions, the computer will fill an array with 128 random
numbers between 65 and 90. Since 65 is the ASCII number for the

letter A and 90 is the ASCII number for the letter Z, this array will
contain numbers associated with letters of the alphabet. Notice the
computer moves from one position to the next as it fills the array in
alphabetical order.

You can select any numbers you choose for this program, provided
that the START and END do not exceed 255 and the value for
NUMBERS is not larger than 383. Numbers larger than this will
cause an error in the program. Numbers smaller than 36 are blanks,
and will not be displayed on the screen.

The numbers associated with graphics characters can also be used. To
sort 11 lines of characters, input these instructions:

START ? 128
END ? 134
NUMBER ? 256

96

Lesson 14: Sorting (continued)

e e

With more items in the array, the sorting process takes almost 30 minutes.
If you get tired of waiting, press [BREAK| and try another input.

Here is a combination that displays all of the graphics characters,
then sorts them by shape and color:

START ? 128
END ? 255
NUMBER ? 256

How It Works

You can use computers to sort data by numerical sequence, alphabet,
or code. This program is a simple sorting algorithm or recipe that
works well and lets you watch the process. For sorting large data
bases, much faster sorting programs, as well as larger and faster
computers, are often used.

The flowchart in Figure 3 shows what is happening while the sorting
program operates. After you input the START, END, and the

NUMBER of items to sort, the computer fills an array with numbers in
random order.

The sorting process begins with the first item in the array. The
computer searches the array for the lowest numbered item and places
it in the first position. After filling the first position, the computer
beeps and moves to the next position. After all positions have been
checked, the array is in numerical sequence, and the computer stops.

As the positions in the array are sorted, the number of items the
computer searches through are decreased. The search process and the
beeps speed up because the computer is spending less and less

time looking through the items that are left.

The principles involved are described in the first three experiments.
This program is assembled in experiments 4 and 5. Here is a complete
listing of Sorting:

10 REM ... SORTING
20 CLS

30 INPUT “"START";S
40 INPUT “"END";E

50 INPUT "NUMBER";N
60 DIM S(N)

100 REM ... FILL ARRAY
110 FOR L=1 TO N

120 S(L)=S+RND(E~-S+1)-1
130 NEXT L

1560 GOSUB 400

- 97

Lesson 14: Sorting (continued)
|

200 REM ... SORT ARRAY
210 FOR A=1TO N-1

220 SOUND 200.1

230 FOR B=A+1 TO N

240 IF S(A)<S(B) GOTO 280
250 T=S(A)

260 S(A)=S(B)

270 S(B)=T

275 PRINT @127+A.CHRS$(S(A));
277 PRINT @127+B,CHR$(S(B));
280 NEXT B:NEXT A

310 END

400 REM ... PRINTOUT

410 FORL=1TO N

420 PRINT @127+LCHR$(S(L)):
430 NEXT L

440 RETURN

LINE 10 and all other Remarks are ignored by the computer.
LINE 20 clears the screen.

LINES 30-50 print the messages in quotes and set the variables (S, E, and
N) to the numbers you input.

LINE 60 dimensions array S. This sets aside positions in the
computer’s memory for storing N numbers.

LINES 100-130 are a program loop that fills the array with random
numbers between S and E.

LINE 150 sends the computer to the subroutine beginning at Line 400.
When the computer reads RETURN in Line 440, it will return to the
next line in the program following GOSUB, Line 200. This subroutine
is used to print the array.

LINES 200-280 form two program loops. Loop A begins the search at
the first position in the array and slowly moves to the next to the last
position. When this loop is complete, the program ends. Loop B
checks the array to see if there are any numbers less than the one
being compared. If so, they are reversed to put the lowest number
available in position A. This process is repeated for each position.

LINE 220 creates a beep each time loop A cycles. These cycles get
shorter as A increases.

LINES 250-270 exchange numbers in the array. This quick shuffle
involves an extra variable, T, to store the contents of S(A) while the
swap is being made.

98

Lesson 14: Sorting (continued)
e S e e ey b e e O e e e R e R O e 0 B e eE

LINES 275-277 are used to print characters. When two numbers

in the array change places, these instructions change the cor-
responding figures on the screen. The location on the screen and
the location in the array are set by the same variable. If A=2, for
example, Line 275 would print at screen location 129. The character
printed would be the one whose number is stored in S(2), the second
position in the array.

LINE 310 ends the program after loop A is complete.

LINES 400-440 are a subroutine that reads the array and prints
matching characters on the screen.

99

100

Lesson 14: Sorting (continued)

10-

50-
70

80-
120

SORTING

FIG. 1

FILL
ARRAY

PRINT
ARRAY

31
40
36

45

PICK
SMALLEST
NUMBER

END

THE
SMALLEST
NUMBER IS 3

KEYBOARD

10-60

100-150

200-310

Lesson 14: Sorting (continued)

SORTING
FIG. 2

INPUT
CONDITIONS

400-440

FILL
ARRAY

START? 1
END? 11

NUMBER? 6

PRINT
OouT

400-440

SORT
ARRAY

e e

RANDOM
147396

END

PRINT
ouT

e e

SORTED
134679

e e

101

102

Lesson 14: Sorting (continued)

KEYBOARD

10-60

100-150

200-280

310

SORTING
FIG. 3

INPUT
CONDITIONS/ -

FILL
ARRAY B

SORT
ARRAY

END

400-440

PRINT
ouT

il L e e e T pepp——

=

START? 65
END? 90
NUMBER? 7

—

LPAFRBL

r_——\

ABFLLPR

&_—J

Lesson 15: Temperature Converter
e e I W e R e e A e R ey, T e e g

Lesson 15: Temperature Converter

This lesson uses temperature conversion between English and metric
units as an example to show how you can write a program for solving
any mathematical problem. You will also see how to round off your
answers and how a menu can be used to select any portion of a
program.

The menu, one of the programming modules discussed in Section 3, is
used in this lesson to select a conversion when either English or
metric units are known. You will use this same module with slight
modifications to easily select from any number of possibilities at the
beginning of other programs you write.

Experiment 1: Convert F to C

The formula for converting a temperature in fahrenheit to celsius is
C=5/9+#(F-32) where C is the temperature in celsius and F is the
temperature in fahrenheit.

Begin by typing [N]J[E]W to clear your computer of your previous
program, then enter this new program to convert temperatures from
F to C.

100 INPUT F
110 C=5/9%(F-32)

120 PRINT C

When you run this program, the computer will print a question mark
and wait for you to input a value for F. Type 2)[1[2] and press
[ENTER]. You will see the answer, 100, and OK on the screen. Run
the program again and enter [3][2] for F. The celsius equivalent is 0.
The temperature at which water boils is defined as 212° F or 100° C.
The freezing temperature is 32° F and 0° C.

Now convert 70 degrees F to C by running the program again and
inputting [7][0]. The answer on your screen is 21.1111111. If you
convert 80 degrees F to C, you will get 26. 6666667 as the answer.

Experiment 2: Rounding Off Answers

When the computer converted 212 and 32 degrees F to C, the answers
were 1 00 and O. These numbers are integers, or whole numbers with

no fractional parts. Converting 70 and 80 degrees to C created the
numbers 21.1111111and 26.6666667. These numbers are not integers
because they contain a fractional part. The INTEGER command can

be used to print the integer or whole number with the fraction

removed.

103

Lesson 15: Temperature Converter (continued)

_

Add line 115 to change the program so that it prints the integer or
whole number part of the answer.

115 C=INT(C)

Now run the program two more times to convert 70 and 80 degrees F
to C. You will get 21and 26 as the answers.

Removing the fractional part of the answer is not as accurate as
rounding off to the nearest whole number. To round off to the nearest
whole number, first add 0.5 to the number, then convert the number to
an integer. Change Line 115 to round off to the nearest whole number
of degrees with this instruction:

115 C=INT(C+.5)

Type [LJA][SI[T] and press [ENTER] to list the complete program:

100 INPUT F

110 C=5/9%(F-32)
115 C=INT(C+.5)
120 PRINT C

Now run the program and convert 70 and 80 degrees F to C. The
answers, 21and 27, are now rounded off to the nearest integer or whole
degree.

This table of temperature conversions is accurate to one degree. Use
your program to check this table or to convert any temperature in
fahrenheit to celsius, with the answer rounded off to the nearest

degree.
Fahrenheit Celsius

0 -18

32 0

50 10

70 21

80 27

100 38

212 100

Experiment 3: Prompt the User

In order to use this program, you must know that the number you
enter is in degrees F and that the number calculated and printed is
in degrees C. This works perfectly well, as long as you remember
what to do. By changing the input and print instructions, you can
print messages on the screen that make this program clear and easy
for anyone to follow.

104

Lesson 15: Temperature Converter (continued)

The actual messages you use can be as simple or elaborate as you
like. To add any message to an input, just put the message in quotes,
followed by the semicolon and the variable you wish to use. For
example, you can replace Line 100 with this instruction:

100 INPUT “"HOW MANY DEGREES F";F

When the computer reads Line 100 it will print the message HOW
MANY DEGREES F? and wait for your input.

Similarly, instead of just printing the value of C in Line 130, you can
add a message describing the answer with this new instruction:

120 PRINT F; "DEGREES F =";C;"DEGREES C”

In Line 120 the computer will print the value of F, the words
DEGREES F =, the value of C, followed by DEGREES.

List your program. It should look like this on your screen, with
messages added to Lines 100 and 120:

100 INPUT "HOW MANY DEGREES F";F
110 C=5/9%(F-32)

115 C=INT(C+.5)

120 PRINT F; "DEGREES F =";C; "DEG
REES C”

If your program doesn’t match this listing, please type the correct
instructions and list the program again to check it.

Now run your program and notice that it tells you what to input and
describes the result. With these messages added, your program is
much clearer, especially for a person using the program for the first
time.

Experiment 4: Convert C to F
Converting centigrade to fahrenheit is easy. Just substitute the correct
formula, and change the instructions to input C and print F. First,
add Line 130 to end the program after the first set of instructions.
Then add this conversion to your program with these lines:

130 END

200 INPUT “"HOW MANY DEGREES C”;.C

210 F=C+*9/5+32

220 F=INT(F+.5)

230 PRINT C; "DEGREES C =";F; "DEGREES F

105

Lesson 15: Temperature Converter (continued)

_

Your program now contains two sections, as shown by this listing.
We have added a blank line between the sections for clarity.

100 INPUT "HOW MANY DEGREES F";F
110 C=5/9+(F-32)

115 C=INT(C+.5)

120 PRINT F; "DEGREES F =";C; "DEG
REES C”

130 END

200 INPUT "HOW MANY DEGREES C”;C
210 F=C+9/5+32

220 F=INT(F+.5)

230 PRINT C; "DEGREES C =";F; "DEG
REES F

One set of instructions beginning at Line 100 converts F to C, and
the new lines you have added convert C to F. Check the second section
beginning at Line 200 with this instruction:

GOTO 200

When you press [ENTER|, the computer will begin running the program
at Line 200 and print the message: HOW MANY DEGREES C ? Enter
the number [1][0][0] for degrees centigrade. The computer will print:

100 DEGREES C = 212 DEGREES F

Experiment 5: Menu Module

In this experiment you will add a menu so that you can convert either
fahrenheit or celsius temperatures. This menu is one of the
programming modules explained in Section 3. When you select item
(1] from the menu, the program will go to Line 100 for a F to C
conversion. Select [2] on the menu and the program will go to Line
200 for a C to F conversion.

The extra spaces in front of each line in the menu are used to center
the printing on the screen. Add these lines to create the menu:

10 CLS:PRINT

20 PRINT TEMPERATURE CONVERTER
30 PRINT

40 PRINT ~ 1. FAHRENHEIT TO CELSIUS”
50 PRINT ~ 2. CELSIUS TO FAHRENHEIT”

106

Lesson 15: Temperature Converter (continued)

60 PRINT
70 INPUT ~ SELECT (1-2)":S
80 CLS:PRINT

90 ON S GOTO 100,200

These instructions are fully described in Section 3 and can be used,
with different words, to create a menu to fit any program. In this
example, the menu prints the text on the screen and lets you input a
number from the keyboard.

Input a [2] and the computer will go to Line 200, the section that
converts C to F. After printing the answer, the computer will stop.

Run the program again and enter a [1] for your selection. The
program will convert the fahrenheit temperature you input and then
stop.

Figure 1 on page 111 is a flowchart diagram that shows how the
program works. The menu module prints the menu and inputs the
selection. If a number other than 1 or 2 is selected, an error is detected
and the computer repeats the menu. If you select [1], the program
converts F to C. Select [2] and the program converts C to F. Notice
that the keyboard is used to input the selection and the numbers for
conversion.

Experiment 6: Repeat?

One more program module will make Temperature Converter easier to use
over and over again. After the program converts a temperature, have it
print: ANOTHER CONVERSION (Y,N) ? The following instructions

ask the question, input the answer, and send the computer back to

Line 10 if the inputisa Y.

300 PRINT

310 INPUT “ANOTHER CONVERSION (Y.N)";A$

320 IF As="Y" GOTO 10
Now complete the addition to the program with this new Line 130.
This instruction sends the computer to Line 300 and ANOTHER

CONVERSION (Y.N) ? after a fahrenheit conversion.

130 GOTO 300

107

Lesson 15: Temperature Converter (continued)

_

Here is a complete listing. Blank lines have been added to separate
the listing into sections.

10 CLS:PRINT

20 PRINT ~ TEMPERATURE CONVERTER”
30 PRINT

40 PRINT 1. FAHRENHEIT TO CELSIUS”
50 PRINT ~ 2. CELSIUS TO FAHRENHEIT”
60 PRINT

70 INPUT ~ SELECT (1.2)";S

80 CLS:PRINT

90 ON S GOTO 100.200

100 INPUT "HOW MANY DEGREES F";F
110 C=5/9%(F-32)

115 C=INT(C+.5)

120 PRINT F. "DEGREES F =";C; "DEG
REES C”

130 GOTO 300

200 INPUT "HOW MANY DEGREES C”;C
210 F=C+9/5+32

220 F=INT(F+.5)

230 PRINT C; "DEGREES C =";F; "DEG
REES F

300 PRINT
310 INPUT “ANOTHER CONVERSION (Y,N)";A$
320 1IF As="Y" GOTO 10

The Figure 2 flowchart on page 112 shows how the menu, F to C
conversion, C to F conversion, and the repeat sections work

together. The computer prints the menu, inputs your selection, and
goes to the section of the program that converts fahrenheit (Lines
100-130) or celsius (Lines 200-230). The number you input is converted,
and the results printed are on the screen. After printing the answer, the
computer asks if you wish to repeat. If so, the program begins again
with the menu.

Experiment 7: Temperature Converter

This program is recorded on the Lesson 15 cassette. You can load
this program from the cassette with [CJ[L][OJ[A][D], or you can enter it
from the keyboard, following the experiments in this lesson.

When you run Temperature Converter you will see a menu with two
selections. Type E] and press and the program will ask
for a temperature in fahrenheit. Enter any number you choose. The
computer will convert to celsius and print the results.

108

Lesson 15: Temperature Converter (continued)

Type and press [ENTER|to try another conversion. This time,
select [2] and convert a celsius temperature to fahrenheit.

Here is a complete listing of the program. Remarks in Lines 1, 99,
199, and 299 are used to make the program listing easier to read and
understand. Compare these titles with the flowchart, Figure 2.

1 REM ... MENU

10 CLS:PRINT

20 PRINT ~ TEMPERATURE CONVERTER”
30 PRINT

40 PRINT 1. FAHRENHEIT TO CELSIUS”
50 PRINT ~ 2. CELSIUS TO FAHRENHEIT”
60 PRINT

70 INPUT ~ SELECT (1:2)":$

80 CLS:PRINT

90 ON S GOTO 100.200

95 GOTO 10

99 REM ... FTOC ...

100 INPUT “"HOW MANY DEGREES F";F
110 C=5/9+(F-32)

115 C=INT(C+.5)

120 PRINT F; "DEGREES F =";C; "DEG
REES C”

130 GOTO 300

199 REM ... CTOF ...

200 INPUT “"HOW MANY DEGREES C”;C
210 F=€+31/5+32

220 F=INT(F+.5)

230 PRINT C; "DEGREES C =";F; "DEG

REES F

299 REM ... MORE ?

300 PRINT

310 INPUT "ANOTHER CONVERSION(Y
N)“AS

320 IF As="Y" GOTO 10

How It Works

Look at the Figure 2 flowchart and see how these four sections of
this program work together in creating the Temperature Converter.
To see the program instructions in each section, type LMSIA and
the lines you wish to see on the screen. Begin by typing

LWIMESITOAIEIEI0] to see the menu.

109

Lesson 15: Temperature Converter (continued)
—

LINES 1-90 create the menu. This program module is described in
Section 3, page 199. The number you input determines the next step in
the program. Input a [1] and the program goes to Line 100. Input a
[2] and the program goes to Line 200. Input any other number and the
program goes to Line 10 to clear the screen and print a new menu.

LINES 99-130 request a temperature in fahrenheit, input the number,
and convert it to celsius. The program bypasses the next section and
goes to Line 300.

LINES 199-230 request a temperature in celsius, input the number,
and convert it to fahrenheit.

LINES 299-320 are a program module that asks if you wish to repeat
the program. If you input a the computer is sent to Line 10. This
and other modules used to end programs are described in Section 3.

110

Lesson 15: Temperature Converter (continued)

TEMPERATURE
CONVERTER
FIG. 1

10-90

TEMPERATURE
CONVERTER

KEYBOARD [——»\ MENU focmmmme] CONYER.
22 CTOF
SELECT (1,2) W
100-130
CONVERT |] 212F = 100C
| FTOC
KEYBOARD —>
END
200-230
2 CONVERT | | _
ke 100C = 212F
KEYBOARD | ———

ERROR END

111

Lesson 15: Temperature Converter (continued)

TEMPERATURE
CONVERTER
FIG. 2

TEMPERATURE

CONVERTER
KEYBOARD || MENU f=sm-mmmmmmo e cecees 1.CTOF

2. FTOC
SELECT (1-2) B

100-130
CONVERT |] B
bl 212F= 100C
KEYBOARD
200-230
C(():I\IT\(')EI}}T 100C = 212F
KEYBOARD >
300-320
ANOTHER
KEYBOARD MORE? CONVERSION
?

112

Lesson 16: Cipher

Lesson 16: Cipher

Program and Game Design

Begin this lesson by loading the Cipher program from the Lesson 16
cassette and playing a computer version of a popular strategy game.
Then see how this program can be written in small sections, tested,
and expanded.

A popular version of this program is available as a board game with
colored pegs. You can also purchase several hand-held electronic
variations. Commercial software is available for playing this game
on many different computers.

The game you will build follows these rules:
® You try to guess a secret code made up of a combination of numbers.

e Each time you guess, the computer will score the accuracy of your
guess.

e For each number in your answer that exactly matches an item in
the code in both number and position, you are scored one black bar.

e For each number in your answer that matches a number in the code
but is not in the correct position, you are scored one black dot.

e The score you get on each trial tells you more about the code. If
you plan your strategy perfectly, you can break the code in the
minimum number of moves.

This version lets you select up to seven positions and up to nine numbers.

With Cipher, you can pick a wide variety of options to test your
skill. If you have never played the game, just follow the directions
in the first experiment, and see how it works.

Experiment 1: Cipher

Begin by loading the Lesson 16 cassette with @@@ Then type
[RIU][N] and press[ENTER].

The computer will ask for the number of positions you want in the

code. Type [3] and press[ENTER]. Then the computer will ask how
many numbers (from 1 to 9) you want the computer to choose from

when it creates the code. Type [3] again and press [ENTER].

The computer will create a three-digit code, using the numbers: 1, 2,
and 3. This code could be any one of the following combinations.

113

Lesson 16: Cipher (continued)
_

111 211 311
112 212 312
113 213 313
121 221 321
122 222 322
123 223 323
131 231 331
132 232 332
133 233 333

Now type [1J[2][3] as your first guess. For each number that matches
the code exactly, the computer will print a black bar. Three black bars
mean you have guessed the code. For each number that matches the
code but is not in the exact position, the computer will print a black
dot.

For example, if the computer had picked 112 for the code, and you had
guessed the following numbers, this would be the result:

Computer’s

Code=112
Your
Guess: Score: Note:
123 | * | = bar
231 e * = dot
122 1l
333
212 [
2117 | %%
121 |
112 [

Notice how a vertical bar (shown as | in the chart above) is displayed
each time the correct number appears in the correct position and how

a black dot (shown as = is displayed each time the-number is correct

but not in the correct position.

If your guess matches the code exactly, the computer prints three
bars and asks, GO AGAIN? (Y.N). Type and press |[ENTER] to
start again with another code.

If you didn’t guess the code correctly on your first try, enter another
guess. Type three digits and look at your score to see if your second
guess matches any numbers in the code.

Continue guessing until your guess matches and you have broken the
code. Then the program will ask GO AGAIN? (Y.N). Type and
press to start a new game. If you select more positions or
more numbers, the code will be harder to break.

If you want to stop the program before you have solved the code, just

press |[BREAK|.

114

Lesson 16: Cipher (continued)
R e e e e O = e S St 0 T e e e L P e o e P o e, | e T e e e e

How It Works

Look at the flowchart on page 123 and see what the computer is
doing while this program runs. The first step sets up two arrays for
storing the code and for storing each guess.

The INPUT GAME section works with the keyboard to determine what
type of code will be created.

INPUT GUESS also works with the keyboard to input and store each
guess.

SCORE POSITIONS contain the instructions for checking each
number in the guess against the matching position in the code.
Numbers that match are scored with a black bar.

SCORE NUMBERS contain other instructions for comparing each
number in the guess with all numbers in the code to see if any black
dots should be scored.

The question MORE, shown by a diamond in the flowchart, can be
answered two ways. If the code is not broken, the computer returns to
input another guess. Solve the code and the computer goes to the next
section in the diagram.

The TUNE near the end is played when the code is solved.

TRY AGAIN by typing a and the program repeats by returning
to the INPUT GAME section.

Experiment 2: Initialize and Input Game

In these next experiments you will write Cipher from the beginning.
In writing long programs, it is best to write short sections and to
test them as you go along.

The first section dimensions arrays to hold the code and the answer,

clears the screen, and prints the title. Type [NJ[E]W and press [ENTER
to erase the previous program, then enter these instructions:

10 REM . o . €IPHER : : ;
20 DIM C(7).H(7)
30 CLS1

40 PRINT " ... CIPHER .. ."

115

Lesson 16: Cipher (continued)
_

Line 10 is a remark and is ignored by the computer. Remarks make your
programs easier to read and understand, but have no effect on the
computer. Line 40 prints the title on the screen.

The array C(7) will store the computer code up to 7 digits long. The
second array, H(7), will store the guess. When you write your own
programs, pick letters for your variables that help you remember
what they contain. Arrays C and H, for example, hold the
computer’s code and the human’s guess.

In the following instructions, the variables P and N hold the values
for position and number. Now enter these instructions and press
[ENTER] after each one:

100 REM .. . INPUT GAME . ..
110 INPUT "HOW MANY POSITIONS (3-7)":P
120 INPUT "HOW MANY NUMBERS (2-9)";N

Run this part of the program and check it. The screen clears and the
title is printed on the top line. Input numbers as requested. The
numbers you enter are printed to the right of each question. After you
input two numbers, the program stops.

Experiment 3: Select Code

Now add the instructions that create the code you will try to break.
200 REM ... SELECT CODE . ..
210 FOR L=1TOP
220 C(L)=RND(N)
230 NEXT L

This loop cycles once for each position or digit in the code. On each cycle,
the computer sets a position in the array equal to a random number.

On the first cycle, C(1) is set equal to a random number. On the next
cycle, C(2) is set equal to a random number, and on the third cycle,

C(3) is set, and so on.

Run your program and select a code with 3 positions and 4 numbers.
The computer will input your data, create a code, and stop. You can
check to see what the first number in the code is by asking the
computer to print it with this instruction:

PRINT C(1)

116

Lesson 16: Cipher (continued)

Notice that there is no line number. This tells the computer to do the
instruction immediately. When you press [ENTER], the computer
prints the number in C(1), which is the first digit in the code. Since
you picked 4 numbers to select from, the number in C(1) could be a
1,2, 3, or 4.

The other numbers in the code are C(2), C(3),and C(4). You can print
these and any other variables in a program by using PRINT.

Experiment 4: Input Guess

Now add these instructions to input your guess. The number you enter
will be stored in the variable K$ and printed on the screen. Then
each digit will be stored in array H with the first digit in H(1), the
second in H(2), and so on.

300 REM ... INPUT GUESS . ..

305 PRINT

310FOR L=1TO P

320 K$=INKEYS$:IF Ks="" GOTO 320

330 H(L)=ASC(K$)-48

340 PRINT " "KS$;

350 SOUND 92.2

360 NEXT L

370 PRINT

The remark in Line 300 makes it easy to find this section in the listing.
Line 305 spaces down one line on the screen. This line was added to the
program to separate the numbers on the screen.

The FOR/NEXT loop from Line 310 to Line 360 cycles once for each
position in the code. Each time this loop cycles, Line 320 creates a
holding pattern and the program waits for an input from the keyboard.
This is done by repeating Line 320 if the input from the keyboard is a
blank “”. When you type any key, the variable K$ is set equal to the
ASCII value of the key you type, and the program goes to Line 330.

Line 330 stores each number of your guess in array H. The number of
any key is its ASCII value minus 48.

Then the computer prints a space, prints the number you typed, and
makes a beep in the speaker. After a number has been entered for

117

Lesson 16: Cipher (continued)

h

each position in the code, the program goes to Line 370 and prints a
space to separate the score from the guess.

Here is how the program should look on your screen. Blank lines
have been added between sections to match the flowchart.

10 REM ... CIPHER . ..
20 DIM C(7).H(7)

30 CLS1

40 PRINT . CIPHER ..."

100 REM . . . INPUT GAME . ..

110 INPUT "HOW MANY POSITIONS (3
=7),P

120 INPUT "HOW MANY NUMBERS (2
—-9):N

200 REM . .. SELECT CODE . ..
210 FOR L=1TO P

220 C(L)=RND(N)

230 NEXT L

300 REM ... INPUT GUESS . ..
3056 PRINT

310 FOR L=1TO P

320 K$=INKEYS$:IF K$=""GOTO 320
330 H(L)=ASC(K$)-48

340 PRINT * ";Ks;

350 SOUND 92,2

360 NEXT L

370 PRINT ™ 7,

Experiment 5: Score Positions

After you have added this next section, you will be able to play a
limited version of the game.

400 REM ... SCORE POSITIONS . . .
410 R=0

420 FOR L=1TO P

430 IF C(L)<>H(L) GOTO 460

440 R=R+1:SOUND 177.,2

450 PRINT CHR$(138);

460 NEXT L

118

Lesson 16: Cipher (continued)
“

The variable R is used to keep track of the number of digits in the
correct position. The FOR/NEXT loop cycles once for each digit and
compares the code with the guess. If they are not equal, Line 430
sends the computer to Line 460. If the code and the guess match, R
is increased, a beep is played through the speaker, and a black bar,
CHR$(138) — is printed.

You can play Cipher now if you add this instruction:
620 IF R<P GOTO 300

This instruction comes later in the program and sends the computer
back for another guess if the number of correct digits R is less than
the number of positions in the code P. Play this limited version of the
game to check your program. The computer will only score black
bars, not black dots, and the code will be very hard to guess. After
you have checked the program, add the second scoring section.

Experiment 6: Score Number

With these added instructions, your program will score both bars and
dots:

500 REM ... SCORE NUMBER . ..

510Y=0

520 FOR A=1TO P.FOR B=1TO P

530 IF C(A)<>H(B) GOTO 570

540 Y=Y+1

550 IF Y>R THEN PRINTCHR$(142);:SOUND 126.2
560 H(B)=0:B=P

570 NEXT B:NEXT A

In this section, the variable Y is used to keep track of all the digits in
the answer that match a digit in the code. Each digit in the code is
compared with all digits in the answer to see if there is a match. If
not, the program goes to Line 570 to try the next combination. If the
numbers match, Y is increased.

In Line 550, the computer prints a black dot and plays a beep if Y is
larger than R, the number of black bars. A dot is not printed for
those matching combinations that have already been scored as black
bars.

If you have already added Line 620, you can now play the game with
both bars and dots.

119

Lesson 16: Cipher (continued)
S B S S A e o S A R e S I & S A B e

Experiment 7: Score Board

This section of the program checks to see if you have solved the code.
If not, the computer goes back to Line 300 for another guess. Get
the correct answer and this section will play a tune and ask you if
you want to go again.
Add these instructions to complete your program:

600 REM ... SCORE BOARD . ..

610 PRINT

620 IF R<P GOTO 300

640 SOUND 126.6

642 SOUND 148.,4

644 SOUND 255,1

648 SOUND 126,2

650 SOUND 132,2

652 SOUND 148.4

660 INPUT “TRY AGAIN (Y,N)";K$

670 IF K$="Y" GOTO 30

If the numbers of bars R isless than the number of positions in the code
P, Line 620 sends the computer back for another guess. Get the code
right and the sequence of sounds in Lines 640 through 652 play a tune.
Then Line 660 asks if you wish to go again. Enter the letter and

the program goes back to the beginning, Line 30. Type any other

letter and the program stops.

Here is the complete listing for Cipher. Extra spaces have been added
between sections.

10 REM ... CIPHER . ..

20 DIM C(7).H(7)

30 CLS1

40 PRINT * ... CIPHER .. .”

100 REM ... INPUT GAME . ..

110 INPUT “"HOW MANY POSITIONS (3
-7).P

120 INPUT “HOW MANY NUMBERS (2
—-9).N

120

Lesson 16: Cipher (continued)
“

200 REM ... SELECT CODE . ..
210 FOR L=1TO P

220 C(L)=RND(N)

230 NEXT L

300 REM ... INPUT GUESS ...

305 PRINT

310 FORL=1TOP

320 K$=INKEY$:IF K$="" GOTO 320
330 H(L)=ASC(K$)-48

340 PRINT * ;K S$;

350 SOUND 92,2

360 NEXT L

370 PRINT ~

400 REM . .. SCORE POSITIONS . . .
410 R=0

420 FOR L=1TO P

430 IF C(L)<>H(L) GOTO 460

440 R=R+1:SOUND 177,2

450 PRINT CHR$(138);

460 NEXT L

500 REM ... SCORE NUMBER . ..
510 Y=0

520 FOR A=1TO P:FOR B=1TO P
530 IF C(A)I<>H(B) GOTO 570

540 Y=Y+

550 IF Y>R THEN PRINTCHR$(142);
:SOUND 126.2

560 H(B)=0:B=P

570 NEXT B:NEXT A

600 REM ... SCORE BOARD . ..
610 PRINT

620 IF R<P GOTO 300

640 SOUND 126.6

642 SOUND 148.4

644 SOUND 2551

648 SOUND 126.2

650 SOUND 132.2

652 SOUND 148.4

660 INPUT "TRY AGAIN (Y.N)":K'$
670 IF K$="Y" GOTO 30

- 121

Lesson 16: Cipher (continued)
e e S R R SR e e L R SUSE B =y S S T e e e e e S A e T S e e R s e e B R B

Experiment 8¢ How to Cheat

While you probably wouldn’t think of cheating, it doesn’t hurt to know
how to look inside a program while it is running and see what is
going on. In this case, you can stop the program, examine the code to
see what it is, and continue running as if nothing had happened. Here
is the procedure.

With the program already running and a code selected by the

computer, stop the program by pressing [BREAK|. Now you can type
instructions and print any variables to see what they contain. To
print the first letter in the code, for example, type this instruction:

PRINT C(1)

Notice that there is no line number. This instruction will be acted on
immediately and will not be added to the program.

To print all the numbers in the code, use several PRINT statements
or use this instruction:

FOR L=1 TO P:PRINT C(L):NEXT L

Again, there is no line number and this short “program’ will print
out all the numbers in the code. If you wish to continue with the

program, just type [G][OJ[TI[O][][3][7][0] and press[ENTER]. The program

will continue as before.

You can use this method to check any variable in a running program
to see what is going on, what might have gone wrong, or to peek at the
answers.

122 -

KEYBOARD

KEYBOARD

370

400-
460

500-
570

600-
620

640-
652

660-
670

Lesson 16: Cipher (continued)

’ CIPHER '

POSITIONS (3-7)

NUMBER (2-9)
INPUT
GUESS
—_-—_—_-\
SCORE I
POSITIONS 7777~~~
—————
SCORE .
NUMBERS [777777777
e e
YES
NO

123

Lesson 17: Math Teacher

—

Lesson 17: Math Teacher

Time Response Monitoring®

You can program your computer to create arithmetic problems, input
the answers, and score the results. In this lesson you will also use a
special technique called Time Response Monitoring to adjust the skill
level or difficulty of each problem.

Learning the arithmetic facts is one example of a skill that can be
aided by a computer program. Although you probably know your
arithmetic, you will discover in this lesson that computer aided
instruction, or CAlI, is a challenging project for your programming
skills. You will begin by writing a simple program to create and
score addition problems. Then you will add the other functions to
build a program that teaches addition, subtraction, multiplication, and
division facts. Finally, you will add feedback by timing the responses
to each problem and continuously adjusting the skill level or
difficulty.

Experiment 1: Problem Solver

Begin by entering this short program. If there are any other
programs in the computer, type NI[E]W and press |[ENTER] to clear the
computer’s memory. Type these instructions carefully, and press

after each one.
10 A=RND(10)
20 B=RND(10)
30 PRINT A:"+":B."=";A+B

The computer will select a random value between 1 and 10 for A, and
a random value between 1 and 5 for B. Then the computer will print
the value of A, a plus sign (+), the value of B, an equal sign (=), and
the correct sum of A+B.

Type RIU][N] and press [ENTER|to run the program and print a
random addition problem on the screen. After the program runs, the

computer prints OK and waits for your next instruction. If you run
the program several times, your screen should look something like
this, with different problems:

OK

RUN
8+4=12

OK

RUN
10+9=19

125

Lesson 17: Math Teacher (continued)

—

OK

RUN
2+8=10

OK

Each time you run the program, a randomly selected addition problem
and the correct answer are displayed. With the random function you
can generate an endless series of problems like these, selected by
chance.

Experiment 2: Answer Please

Instead of having the answer printed, change the program to print
the problem only. Then, have the student input the answer from the
keyboard. If the answer is correct, instruct the computer to print
RIGHT on the screen. First type [LI[1][S][T] to see your program:

10 A=RND(10)
20 B=RND(10)
30 PRINT A; "+";B;"=",A+B

Change Line 30 so that the problem, not the answer, is printed.
30 PRINT A;"+7:B; "="

When you press [ENTER], this instruction replaces Line 30 in the program.
Input and score the answer by adding these instructions:

40 INPUT C

50 IF A+B=C THEN PRINT “RIGHT"

Run this program a few times, and try guessing right and wrong answers
to check it. Here is the complete program:

10 A=RND(10)

20 B=RND(10)

30 PRINT A;"+" :B:"="

40 INPUT C

50 IF A+B=C THEN PRINT “RIGHT"

Experiment 3: Branching

One way to expand the program is to repeat the problem if the answer
is wrong and create a new problem if the answer is correct. You can
add this feature by changing Line 50 and adding a new instruction,
Line 60. The new Line 50 is too long to fit on your screen. Just
continue typing and the instruction will continue on the next line on
your screen. Remember to press at the end of each
instruction.

126

Lesson 17: Math Teacher (continued)
fe e e e e s i e e e e e O S R RS R

50 IF A+B=C THEN PRINT “RIGHT":GOTO 10
60 GOTO 30

Type [Il@ and press[ENTER|. Your complete program should

now look like this:

10 A=RND(10)

20 B=RND(10)

30 PRINT A;"+";B "=",

40 INPUT C

50 IF A+B=C THEN PRINT “RIGHT":G
07O 10

60 GOTO 30

The flowchart in Figure 1 on page 135 shows how the branching
works in this program. Line 50 checks to see if the answer is correct.
If so, the computer prints RIGHT and goes to Line 10 to select a new
problem. If the answer is wrong and A+B is not equal to C, the
instructions in Line 50 are ignored and the computer goes to the next
line in the program, Line 60. This instruction sends the computer
back to Line 30 to print the problem again.

Run this program and notice that it repeats a problem over and over,
until the correct answer is given. Then the computer creates a new
problem. In this example, the program branches to one of two
possible actions, depending on whether the answer is correct or not.
The next experiment uses a similar branching technique to select one
of four possible problems to solve.

Experiment 4: Electronic Flash Cards

Another change that will make this program more fun to use and
more effective as a learning tool is to include subtraction, multi-
plication, and division problems. This new program uses four

short sections to generate the four types of problems. The branching
occurs in Line 40 where the computer goes to one of four places in the
program, depending on the value of G.

To enter this program, press [BREAK| to stop the previous program.

Type [NJE]W and press [ENTER] to erase the old program from the
computer’s memory, then enter each of the following instructions:

10 A=RND(10)
20 B=RND(10)

30IFB>ATHEN 10
40 G=RND(4)

127

Lesson 17: Math Teacher (continued)

—

50 ON G GOTO 100, 150, 200, 250
100 PRINT A;"+":B."=",
110 X=A+B

120 GOTO 400

150 PRINT A;"-"B;”
160 X=A-B

170 GOTO 400

200 PRINT A;"+"B;”
210 X=A+B

220 GOTO 400

250 PRINT A«B;"/";B;"=",
260 X=A

270 GOTO 400

400 INPUT C

410 IF C=X THEN 10
420 GOTO 40

Run the program and enter your answer to the first problem. The program
will repeat the problem until you input the correct answer.

How It Works

The flowchart in Figure 2 on page 136 and the following description
show how this program creates an electronic version of the familiar
flash cards used to teach arithmetic facts.

LINES 10 and 20 select two random numbers for A and B.
LINE 30 repeats the selection if B is larger than A. With this
instruction, A-B will always be a positive number. This avoids

negative answers to the subtraction problems.

LINE 40 sets G equal to a random number from 1 to 4.

128

Lesson 17: Math Teacher (continued)
“

LINE 50 sends tne computer to one of four places, depending on the
value of G. This branching allows the program to create a random
assortment of problems in addition, subtraction, multiplication, and
division.

LINES 100-120 print an addition problem and set X equal to the
answer.

LINES 150-170 print a subtraction problem and set X equal to the
answer.

LINES 200-220 print a multiplication problem and set X equal to the
answer.,

LINES 250-270 print a division problem and set X equal to the
answer. Notice that the answer is the integer A, not a fraction.

LINE 400 inputs the answer from the keyboard.

LINE 410 sends the computer to Line 10 to create a new problem if
the answer is correct.

LINE 420 sends the computer to Line 50 to reprint the problem if the
answer is not correct.

Experiment 5: Input Module

Having to press [ENTER| after typing in the answer is clumsy. You
can avoid the use of the [ENTER| key with this program module that
replaces Line 400. These instructions work together and allow you to
input any number up to three digits long.

The program flowchart (Figure 2) is unchanged. The INPUT ANSWER

function is replaced with the INPUT MODULE, Lines 400-490, below.
This and other modules are explained in Section 3.

Press |BREAK] to stop the program, then add these instructions to
replace Line 400:

400 REM ... INPUT MODULE
410Bs8=""

420 AS=INKEYS$

430 IF As="" THEN 420

440 PRINT As;

450 B$=BS$+AS

129

Lesson 17: Math Teacher (continued)

-

460 IF X>9 AND LEN(B$)<2 THEN 420
470 IF X>99 AND LEN(B$)<3 THEN 420
480 PRINT

490 IF VAL(B$)=X THEN 10 ELSE 50

Now run the program and notice that you don’t have to press the ENTER
key. You do have to type the same number of digits as the correct
answer, however, for the program to work. If the answer is 17, for
example, you must type two digits before the computer will respond.

How It Works

In this program, the input module uses the string variable A$ to
store each key you type and B$ to store the combined keys that make
up the number you input.

The INKEY function sets A$ to the key you type. Unlike the INPUT
statement, this function reads the keyboard immediately, and does not
wait for the ENTER key.

Line 450, each key you type is combined with the keys in B$. If you
type [3] and [2], for example, B$ will contain 32.

The function LEN(B $) shows how many characters (numbers or
letters) are stored in B$. The checks in Lines 460 and 470 continue
inputting keys from the keyboard until your answer has the same
number of digits as the correct answer.

Then the two numbers are compared, in Line 490. The function
VAL(BS) turns B$ into its numeric value. If B$ contains 25,
VAL(B$) would be the number 25.

Experiment 6: Adjust the Skill Level

One way to adjust the difficulty of the problems this program
generates is to adjust the size of the numbers picked for A and B.

Stop the program and type [I]E]DE@E][E@ to list these lines

of your program.

Add a new instruction to input the skill level, S. Then change RND
functions so that the numbers A and B will be selected from a larger
range of possibilities. With a low skill level of 5, both A and B will
be numbers between 1 and 5. With a higher skill level such as 15, both
A and B will range from 1 to 15 and the problems will be much more
difficult to solve.

130 -

Lesson 17: Math Teacher (continued)

R e e e S e e e e e T T i e

To make this change, add these instructions:
5 INPUT “SKILL LEVEL";S
10 A=RND(S)
20 B=RND(S)

When you run this version, the computer will ask SKILL LEVEL? If
you input a [1][0], the program will work as before. To create easier
problems, use a lower number. If you select a skill level that is too
high, or if you wish to change your selection at any time, just press
BREAK]| and run the program again.

How It Works

Here is the complete listing and full description of each instruction.
The spaces have been added between lines in this listing so that the
sections will match the flowchart in Figure 3.

5 INPUT “SKILL LEVEL";S

10 A=RND(S)
20 B=RND(S)
30 IF B>ATHEN 10

40 G=RND(4)
50 ON G GOTO 100. 150. 200. 250

100 PRINT A;"+":B;"=";
110 X=A+B

120 GOTO 400

1650 PRINT A;"-":B;"=";
160 X=A-B

170 GOTO 400

200 PRINT A;"#":B;"=";
210 X=A=+B

220 GOTO 400

250 PRINT A=B:.”"/":B;"=";
260 X=A

270 GOTO 400

400 REM ... INPUT MODULE
410Bs$=""

420 AS$=INKEYS

430 IF A$=""THEN 420

440 PRINT AS;

450 B$=BS$+AS$

460 IF X>9 AND LEN (B$)<2 THEN 420
470 IF X>99 AND LEN(B$)<3 THEN 420
480 PRINT

490 IF VAL(BS$)=X THEN 10 ELSE 50

131

Lesson 17: Math Teacher (continued)
—

LINE 5 inputs the skill level, S.

LINES 10-30 select random numbers from 1 to S for the variables
A and B.

LINES 40-50 select the type of problem (+, —, », or/) and branch to
the appropriate section of the program.

LINES 100-260 print the problem and set the variable X equal to the
correct answer.

LINES 400-480 are a program module that inputs a number from the
keyboard without using the ENTER key.

LINE 490 tests to see if the number typed is equal to the answer, X.
If so, the program creates a new problem; and if not, the old problem
is repeated.

Press [CLEAR], type [LI[USITC]AIOIWOI[-]2][€][0], and press [ENTER].
The computer will list Lines 100 to 200 on the screen. In Figure 3 on
page 137 these lines are labeled PRINT PROBLEM. These same instruc-
tions also appear in Figure 2, where PRINT PROBLEM is shown as four
separate functions. There is no “‘correct” way to draw a flowchart, and
you can combine instructions any way that helps you see the overall
pattern. This entire section, for example, could appear as a block
labeled Math Teacher in a flowchart of this book.

Experiment 7: Math Teacher

This final program is recorded on the Lesson 17 cassette. Load the

program from the cassette with @@@@ and type [EHE[E

Type the answers to the problems on the screen as fast as you can. If
you answer quickly and correctly, the problems will include larger
numbers and be more challenging. Miss a few answers or slow down
in your response, and the problems will get easier again. As you
continue to work with this program, the level of difficulty will adjust
to match your skill and give you an ideal challenge that is neither
boring nor too difficult. After 20 problems, you get a report card and
the chance to go again.

This programming technique is called Time Response Monitoring, or
TRM. In this program, the response time is monitored and used to
control the average difficulty of the problems.

How It Works

The flowchart in Figure 4 on page 138 shows that three program
modules are used for INPUT, TRM, and REPORT CARD. These and
other modules are described in Section 3.

132

Lesson 17: Math Teacher (continued)
T e o e

LINES 1-25 initialize the program by setting the skill level S to 5
and the number of errors E to O. The FOR/NEXT loop is set to
cycle 20 times and create 20 problems before displaying the report
card.

The variable S is continuously adjusted to vary the skill level. This
level may be increased or decreased after each answer, depending on
the response time. Answer quickly and S is increased. Take longer
or get a wrong answer and S is reduced.

LINES 29-70 create the problem, using two random numbers A and
B. At the start, A and B are random numbers from 1 to 5. If the
skill level increases, S will increase, and the random numbers will

be selected from a larger range. In Line 70 the program branches to
one of four sections, depending upon the random value of G.

LINES 99-260 print the problem on the screen. Four separate sections,
beginning at Lines 100, 150, 200, and 250, are used to create addition,
subtraction, multiplication, and division problems. In each section,

the variable X is set equal to the correct answer.

LINES 400-480 are an input module that gets a number from the
keyboard. This module eliminates using the ENTER key after each
number.

LINES 500-620 are the TRM module that measures the response time
and adjusts the skill level after each problem. This module increases
or decreases the variable S that is used in Lines 30 and 40 to select
the numbers A and B.

LINE 630 completes the FOR/NEXT loop. If less than 20 problems
have been answered, this instruction sends the computer back to Line
25 to create another problem.

LINES 700-780 are a report card that prints the results. This program
module also inputs a key from the keyboard. If the key pressed is Y,
the program continues with the current skill level and 20 new problems.

1T REM ... MATH TEACHER
10 S=5:CLS

20 E=0

25 FOR L=1TO 20

29 REM ... CREATE PROBLEM
30 A=RND(8)

40 B=RND(8)

50 IF A<B THEN GOTO 30

60 G=RND(4)

90 ON G GOTO 100.150.200.250

99 REM ... PRINT PROBLEM
100 PRINT A"+ ;B;"= "

133

Lesson 17: Math Teacher (continued)

_

110 X=A+B

120 GOTO 400

1650 PRINT A;"-":B;"=
160 X=A-B

170 GOTO 400

200 PRINT A;"+";B;"=
210 X=A+B

220 GOTO 400

250 PRINT A=B;”/":B;"=
260 X=A

400 REM ... INPUT MODULE
410Bs$=""T=0

420 AS=INKEYS

425 T=T+1

430 IF As="" THEN 420

440 PRINT As;

450 B$S=BS$+AS

4601F X>9 AND LEN(B$)<2 THEN 420
470 IF X>99 AND LEN(B$)<3 THEN 420
480 PRINT

500 REM ... TRM MODULE

510 IF VAL(B$)=X THEN 600

520 PRINT “"SORRY., THE ANSWER IS ;X
530 E=E+1

540 S=S-4

550 GOTO 70

600 IF T>400 THEN T=400

610 S=S+2-INT(T/100)

620 IF S<5 THEN S=5

630 NEXT L

700 REM ... REPORT CARD ...

710 CLS:PRINT

720 PRINT ... REPORT CAR

D ...":PRINT

730 PRINT ~ YOU GOT";20-§&"

740 PRINT OUT OF 20 CORRECT”
:PRINT

750 PRINT ~ YOUR SKILL LEVEL !
S";S:PRINT

760 PRINT ~ SAME PLAYER GO AGA
IN (Y.N)?”

770 Y$=INKEYS:IFY$="" THEN 770

780 IF Y$="Y" THEN CLS:GOTO 20

Time Response Monitoring and TRM programming are registered
trade marks of The Image Producers, Inc.

134

10
20

Lesson 17: Math Teacher (continued)

MATH
TEACHER
FIG. 1

Y

PICK RANDOM
NUMBERS

KEYBOARD

30

PRINT
PROBLEM

INPUT
ANSWER

2+3=5

PRINT
“RIGHT”’

REPEAT

RIGHT

135

136

10-

Lesson 17: Math Teacher (continued)

TEACHER

MATH

FIG. 2

?¢

PICK RANDOM

NUMBERS
30 A & B
40- | SELECT TYPE
50 OF PROBLEM
S
100- PRINT
120 PROBLEM
150- PRINT
170 ' PROBLEM
200- PRINT
220 PROBLEM
250- / PRINT
270 PROBLEM
400
INPUT
KEYBOARD e T — 1
CREATE
NEW
PROBLEM

REPEAT
PROBLEM

]

A+B=C

KEYBOARD

| ADJUST

Lesson 17: Math Teacher (continued)

MATH
TEACHER
FIG. 3

10-30

40-50

SKILL LEVEL

PICK
NUMBERS
A&B

SELECT TYPE
OF PROBLEM

100-260

400-480
KEYBOARD

PRINT
PROBLEM

INPUT
ANSWER

NEW
PROBLEM

CORRECT

)

REPEAT
PROBLEM

137

Lesson 17: Math Teacher (continued)

1-25

29-70 START
CREATE
PROBLEM
PRINT
202260 PROBLEM
400-480 INPUT
KEYBOARD N
TRM
500-620| \{ODULE

REPORT CARD

700-780
KEYBOARD > REPORT YOU GOT 19

CARD OUT OF 20
GO AGAIN (Y,N)

MORE
2

138

Lesson 18: Hangperson

Lesson 18: Hangperson

String Manipulation and Game Design

In this lesson you will create your own version of a popular logic
game. You will begin by building a short program and then add
features and improvements to the design.

Each section in the short program is expanded and improved to create
the final game. You can begin with Experiment 1 and create the game
from scratch, or load Lesson 18 from the cassette and see the final
result before you study this lesson in detail.

The first two experiments show how ASCII numbers are used for
representing characters on the keyboard and how strings or words can
be measured and evaluated. With this background you will then write
a short program for playing the game.

Experiments 5 through 9 expand that program and add many features
to make it easier and more fun to play.

This programming technique — building a simple version of a program
and expanding its features — is a very good design method. Follow
along as these experiments show you how to create Hangperson — a
word guessing game for two people.

Experiment 1: ASCII Numbers

Your color computer uses a number code to represent the keys on the
keyboard. You can find the number associated with each key with this
short program. Clear your computer with NI[E]W and enter these
instructions:

10 INPUT X$
20 PRINT X$; ASC(XS$)

30 GOTO 10

Run the program, press any key, then press [ENTER]. The computer will
set the string variable X$ equal to the key you type, print the key and
its ASCII number, and go back to the beginning for another input. Try
inputting letters to see the range of numbers used for the alphabet.
Depending on the letters you pick, your screen could look like this:

? A
A 65
? B
B 66
7 G
C 67

I |

139

Lesson 18: Hangperson (continued)

—

The ASCII numbers 65, 66, and 67 are used to represent the letters A,
B, and C. The complete alphabet is represented by the ASCII
numbers 65 (A) through 90 (2).

Punctuation, numbers, and symbols also have ASCII numbers. Try
typing the hyphen [-] and see that its ASCII number is 45. The colon
and the comma are used by the computer as control words.

Experiment 2: LEN and MID Functions

You can use the LEN function to find the number of characters in a
string. In Hangperson, this function is used to find out how many
letters are in the code word. Stop the program with [BREAK] and
change Line 20 by entering this new instruction:

20 PRINT LEN(XS)

Now run the program. Enter any word and the computer will print the
number of characters in the word, like this:

7 A
1
7 ALL
3
? ALPHABET

8
?

The MID function can also be used to print any specific character in
a string or word. Stop the program and change Line 20 to this new
instruction:

20 PRINT MID$(X$.3.1)

The number 3 tells the computer to skip to the third character, and the
number 1 is the number of characters after that to be printed. In this
example, the function prints the third letter in the word you enter.

Run the program and enter a word. When you press |[ENTER|, the
computer will print the third letter or character in the word, like this:

¢/ TEST

S

? COMPUTER
M

? 45678

6
?

140

Lesson 18: Hangperson (continued)
B S B e S B N S A S S G

In each case, the computer printed the third character. You can also use
the MID function to print any other portion of a string by changing the
numbers 3 and 1 in the instruction. Later in the program you will
use the MID function to check each letter in the code word.

Experiment 3: Input Word and Load Array

The first step in designing Hangperson is putting the code word into
the program and creating an array to store the characters that have
been guessed correctly. The program begins by setting the variable
W equal to the code word. Then the array S is dimensioned to hold
a number for each character in the code word, W$. Each of these
positions in the array is set equal to the number 45.

Later you will use this array to store the ASCII numbers for the

letters that have been guessed correctly. For now, each position in the
array holds the number 45 — the ASCII number for a hyphen or dash.

Begin building Hangperson by clearing the computer with [NJ[E]W and
entering these instructions:

10 INPUT W

20 DIM S(LEN(WS))

30 FOR L=1 TO LEN(WS$)
40 S(L)=45

50 NEXT L

Experiment 4. Print the Array

This next section in the program prints the characters whose ASCII
numbers are stored in the array. If the array contained the numbers
65, 66, and 67, for example, these instructions would print the
characters A, B, and C on the screen. Now add this section of the
program that begins on Line 300 with a remark and prints the
characters whose ASCII numbers are stored in the array.

300 REM ... PRINT ARRAY ...
310 FOR L=1 TO LEN(WS$)

320 PRINT CHR$(S(L));

330 NEXT L

141

Lesson 18: Hangperson (continued)

L —

Type [I“Sl and press |[ENTER| to see the complete program. Compare
your listing to the one below and correct any errors. (Blank lines are
added to separate this listing into the three sections shown in the

flowchart.)
10 INPUT W$

20 DIM S(LEN(WS))

30 FOR L=1TO LEN(WS)
40 S(L)=45

50 NEXT L

300 REM ... PRINT ARRAY
310 FOR L=1TO LEN(WS)
320 PRINT CHRS$(S(L));

330 NEXT L

A flowchart for this program is shown in Figure 1 on page 151.

As you can see, the computer will create an array with a position for
each letter in the word. Then the computer will fill the array by
storing the number 45 in each position. Finally, the numbers stored in
the array are converted to characters and printed.

Run the program and enter a code word. The computer will print a
dash for each letter in the word, like this:

? TESTING

Experiment 5: Input and Score Guess

With these additions, you will be able to play Hangman. Add these
instructions to input a letter and score the results:

100 CLS

110 INPUT G$

200 REM ... SCORE ..

210 FOR L=1TO LEN(WS)

220 IF G$=MID$(Ws.L. 1) GOTO 240
230 GOTO 250

240 S(L)=ASC(GS)

250 NEXT L

After clearing the screen in Line 100, the computer will set G$ equal to
a letter typed on the keyboard. Then the letter is compared with each
character in the code word. If they are equal, the computer sets the
matching position in the array equal to the ASCII number of the letter.
Finally, the numbers stored in the array are converted to characters

and printed.

142

Lesson 18: Hangperson (continued)

Run the program, enter [E]@'I][E@ as the code word, and then
enter the letter T. Your screen should look like this:

T— T
oK

As you can see, the code word has seven letters. The first and the
fourth letter are T.

One more change will complete the program. Add this instruction and
cause the program to loop back for another guess after printing the
array:

400 GOTO 110

Run the program again, enter E@mlﬂ]@ for the code word
and then try these letters: T, A,S, |, G. Your screen will show:

> T
Tl 7 A
T——T———2 S
T S = |
T—STll——3 @&
T—STI—G?

Each letter you input that matches a letter in the code word is added

to the printout. Continue entering letters to complete spelling the code
word. Notice that the computer keeps track of the letters that match
the code word to show your progress.

Hangperson is now complete and you can play the game with a friend.
You can run the program, enter a code word (without showing your
friend), and then have your friend try to guess the word by entering
letters. After the word has been guessed, press [BREAK] to stop the
program. To go again, run the program and input a new code word.

The flowchart for the program is shown in Figure 2 on page 152 and
the complete listing is shown below.

10 INPUT W$

20 DIM S(LEN(WS))

30 FOR L=1 TO LEN(WS)
40 S(L)=45b

50 NEXT L

100 CLS
110 INPUT Gs

143

Lesson 18: Hangperson (continued)

_

200 REM ... SCORE ..

210 FOR L=1 TO LEN(WS)

220 IF G$=MID$(Ws.L, 1) GOTO 240
230 GOTO 250

240 S(L)=ASC(GS$)

250 NEXT L

300 REM ... PRINT ARRAY
310 FOR L=1 TO LEN(WS)
320 PRINT CHR$(S(L));

330 NEXT L

400 GOTO 110

Experiment 6: Improve Inputs

Now that the basic game is running, you can begin adding improve-
ments to the program. These next experiments add details that make
the program much more interesting.

Begin by changing Line 10 so that it clears the screen and prints the
message CODE WORD in addition to setting the word you type equal
to Ws.

10 CLS:INPUT “CODE WORD";W$

The next improvement in the program will eliminate pressing the
ENTER key after each letter you guess. Replace the standard input
instruction in Line 110 with these lines:

110 G$=INKEYS
120 IF G$="" GOTO 110
130 PRINT G$

The difference between using INPUT and INKEY$ is that INPUT
requires the key after each letter. These instructions loop
(repeat) until a key is pressed, then G$ is set equal to the character
and printed automatically. Run the program again and see how these
changes improve the game.

Experiment 7: Add Sound Effects

These instructions add sound effects whenever you guess a letter
correctly, and play random sounds to match the printout:

245 SOUND 100.2

325 SOUND S(L).1

Run the program, enter a fairly long word, adjust the volume on your TV,
and try this addition to the program.

144

Lesson 18: Hangperson (continued)
R e N e N T T s

Experiment 8 Allow Only Eight Guesses

The classic Hangperson game only allows eight wrong answers. Add
this feature by using the variable W to store the number of guesses
that don’t match a letter in the code word. If W is less than 8, the
game continues. If W equals 8, the person is hanged and the game
is over.

Begin by listing the scoring section of the program by pressing

[CLEAR] and entering [LI[T][SI[T]IJ2)[0][0)[-][2])[B][0]. Your screen will

show:

200 REM ... SCORE

210 FOR L=1 TO LEN(WS)

220 IF Gs=MID$(W$,L. 1) GOTO 240
230 GOTO 250

240 S(L)=ASC(GS)

245 SOUND 100.2

250 NEXT L

Add this instruction to the beginning of the program. This sets W, the
number of wrong answers, to O when the program starts.

60 W=0

A wrong answer is scored only if the letter picked G$ does not match any
letter in the code word W$. To keep track of any match, add these

two instructions. Line 205 sets M, the number of matches, to O when

the scoring begins. Line 247 sets M equal to 1 if G$ matches a

letter in the code. With these changes, M will be O if G$ does not
match any letter in the code word.

205 M=0
247 M=1

Now you can test to see if M is zero, and increase W if it is not, with this
instruction:

260 IF M=0 THEN W=W+1

The final step will change the program so that it only allows eight wrong
guesses. This new instruction replaces Line 400 and sends the
computer back for another input only if the number of wrong guesses

is less than 8:

400 IF W8 GOTO 110

As a final touch, add this instruction to print the correct answer if the
number of wrong answers exceeds the limit (and the game is lost).

145

Lesson 18: Hangperson (continued)
—

410 PRINT “SORRY”
420 PRINT "“THE ANSWER WAS”
430 PRINT W$

With these changes, the program repeats if the number of wrong answers
is less than 8, and prints the answer if there are 8 mistakes.

Experiment 9: Test for Correct Answer

With these three instructions your program will check to see if the
code word has been broken. If all the letters in the code have been
guessed, the program will print a winning message and stop. An easy
way to test for the correct answer is to see if there are any dashes left
in the array. If there are no dashes, then all letters have been guessed
correctly.

Set the variable D to O before printing the array. As the array is
printed, check each position in the array and set D equal to 1 if any
dashes are present. Remember that the array will contain the number
45 if a dash is printed on the screen. If there are no dashes D=0, print
the message in Line 340 and end the program.

305 D=0
322 |F S(L)=45 THEN D=1
340 IF D=0 THEN PRINT:PRINT “ YOU WIN!":END

Now run this version of the program and see if the improvements make
the game easier and more fun to play.

Experiment 10: Compare Designs

Compare the present design, shown in Figure 3, with the previous
design in Figure 2. Except for the ending sequence that limits the
game to eight wrong answers, and the winning announcement, the
two designs are very much alike.

A good programming technique is to build a simple version of a
design; then add improvements and expansions. You can create
longer or more complex programs by working in small steps and
testing the results as you go along.

A listing of the complete program is shown on the next page. As before,
blank lines have been added to separate the listing into sections that
match the flowchart.

146 .

Lesson 18: Hangperson (continued)

L 3 e B T e e e T e e e e e e e T e

The program for the next experiment is recorded on the Lesson 18
cassette. This version of Hangperson uses a slightly different screen
format and includes a picture that “grows” with every guess that
doesn’t match the code word.

10 CLS:INPUT “"CODE WORD";W$
20 DIM S(LEN(WS$))

30 FOR L=1TO LEN(WS)

40 S(L)=45b

50 NEXT L

60 W=0

100 CLS

110 GS=INKEYS

120 IF G$="" GOTO 110
130 PRINT G$

200 REM ... SCORE

205 M=0

210 FOR L=1 TO LEN(W3s)

220 IF G$=MID$(Ws,L. 1) GOTO 240
230 GOTO 250

240 S(L)=ASC(GS)

245 SOUND 100.3

247 M=1

250 NEXT L

260 IF M=0 THEN W=W+1
300 REM ... PRINT ARRAY
305 D=0

310 FOR L=1 TO LEN(WS)
320 PRINT CHR$(S(L));
322 IF S(L)=45 THEN D=1
325 SOUND S(L).1

330 NEXT L

340 IF D=0 THEN PRINT:PRINT “YOU
WIN!":END

400 IF W<8 GOTO 110
410 PRINT “SORRY”
420 PRINT “THE ANSWER WAS”

430 PRINT W$

Experiment 11: Hangperson

This word guessing game is usually played by two people. One person
programs a secret code word and the other tries to guess what it is.
Letters are guessed one at a time. If the letter guessed is contained in
the word, the letter is shown in its correct position. Guess a letter
that is not in the word and the Hangperson picture grows. If you miss
eight letters, the picture is complete, and the person is hanged. 1477

Lesson 18: Hangperson (continued)

Begin by loading the Lesson 18 cassette with @@@ then run
the program. When CODE WORD? appears, type any word and press
[ENTER]. Then a second person can type letters one at a time and try
to guess the secret word.

Play the game several times and see what the program does when
right and wrong guesses are made, then try playing this game with

a friend. The flowchart in Figure 4 on page 154 shows how the
program is designed. Notice that the computer can take one of several
paths, depending on the status of the game. For example, if the last
letter guessed was not correct, the computer will respond YES to the
question NO MATCH? The next step will be to print the picture on the
screen. If there are less than eight wrong answers, the computer will
go back to Line 100 to input another guess. If this is guess number
eight, the computer will print the correct answer and ask if you wish
to try again.

Play the game several times, using the flowchart to see what the
computer is doing as you run the program.

How It Works

If you haven’t done the experiments in this lesson, you could see how
it works by starting with Experiment 1 and building this program step
by step. You will quickly see how an easier version can be written
with only a few instructions. Then follow the experiments as each
section in the program is expanded. The picture is created with
graphics characters, as explained in Lesson 21: Graphics.

The following listing shows the complete program as recorded on the
cassette. Spaces have been added to this listing to match the flow-
chart in Figure 4.

1 REM ... HANGPERSON . ..

10 CLS:INPUT “ CODE WORD";W$
20 DIM S(LEN(WS))

30FOR L=1TO LEN(WS)

40 S(L)=45

50 NEXT L

60 W=0

100 CLS
1056 PRINT ... HANGPERSON

107 PRINT - GUESS A LETTE
'

110 GS=INKEY'$

1201F G$="" GOTO 110

130 PRINT @72.G8: : "

148 —

Lesson 18: Hangperson (continued)

200 REM ... SCORE

205 M=0

210 FOR L=1 TO LEN(WS)

220 IF G$s=MIDs$(Ws,L. 1) GOTO 240
230 GOTO 250

240 S(L)=ASC(GSs)

245 SOUND 200.6

247 M=1

250 NEXT L

260 IF M=0 THEN W=W+1
300 REM ... PRINT ARRAY
305 D=0

310 FOR L=1 TO LEN(WS)
320 PRINT CHRS(S(L));
322 IF S(L)=45 THEN D=1
325 SOUND S(L).1

330 NEXT L

340 IF D=0 THEN PRINT @448, "YOU
WIN!":GOTO 420

350 IF M=0 THEN GOSUB 500

400 IF W8 GOTO 110

405 PRINT

410 PRINT @448.” SORRY. THE WORD
WAS: "Ws

420 PRINT “TRY AGAIN (Y.N)?";
430 X$=INKEYS$:IF X$=""GOTO 430

440 |IF X$="Y" THEN RUN ELSE END

500 REM ... DRAW PICTURES
508 RESTORE

510 FORY=5TO 5+W

520 FOR X=11TO 17

525 READ C

527 SOUND C.1

528 PRINT @32*Y+X,"+";

530 PRINT @32«Y+X,CHR$(C);
540 NEXT X:NEXT Y

560 RETURN

600 DATA 208.211.215,211,219,211
208
610 DATA 145,223.254,223.253.223
146
620 DATA 208.220.,223.223,223.220
.208

149

Lesson 18: Hangperson (continued)

630 DATA 211,211,211,223,211,211
éZAjC; DATA 223,208,223,223,223,208
6252§DATA 223,208,223,223,223,208
6262§DATA 264,208,223.220,223,208
'6275§DATA 208,208,223,208,223.208
é}ZOZDATA 208.243,261,208,247,243

150

Lesson 18: Hangperson (continued)

HANG PERSON
FIG. 1

10

INPUT
KEYBOARD CODE WORD/ ~=========- ? TESTING

20-50

LOAD
ARRAY

400-430

PRINT
ARRAY

END

151

152

Lesson 18: Hangperson (continued)

KEYBOARD

KEYBOARD

10

HANG PERSON
FIG. 2

INPUT
CODE WORD/ ™ ~"777777""71

20-50

? TESTING

LOAD
ARRAY

100-110

INPUT
LETTER

200-250

SCORE

300-330

PRINT
ARRAY

400

REPEAT

KEYBOARD

Lesson 18: Hangperson (continued)

HANG

PERSON

FIG. 3

10 INPUT
\ CO /

KEYBOARD

340

<8

WRONG
GUESSES
?

DB S ——— CODE WORD?
\ WORD |
LOAD
20-60 ARRAY
¥
100-130 INPUT [] G
LETTER
200-260 SCORE
300-330

YOU WIN!

YES

SORRY
THE ANSWER
WAS

TESTING

153

154

Lesson 18: Hangperson (continued)

KEYBOARD

KEYBOARD

YES

HANG PERSON

FIG. 4

10-60

INPUT
CODE
WORD

100-130

CODE WORD?

GUESS A
LETTER

SCORE

300-330

PRINT
RESULTS

340

- 500-680
PRINT
PICTURE [~~~ q= Ub
400-
4
10 / s\ YES
WRONG
?
NO
PRINT [zviES.W ORD
ANSWER COMPUTER
420-
40 /50 \ YES
AGAIN RUN
?
NO
END

Lesson 19: Music Teacher

Lesson 19: Music Teacher

Music Instruction and Game Design

There are several computer games on the market that create random
tunes and test your ability to repeat each note correctly. Music Teacher
is a software version of these games and uses the computer keyboard
to input the notes.

This lesson begins with a review of the SOUND command. Then you
will create an instrument, using the computer keyboard and the
numbers 1 through 8 to play one octave in the key of C.

Program modules are used to input keys from the keyboard and to
play music notes. The final version of Music Teacher can be loaded
from the Lesson 19 cassette or created by following these experiments.

Experiment 1: Sound F,D

Begin by typing [NJ[E]W to clear any old programs, then enter these
instructions:

10 INPUT F,D
20 SOUND F.D

30 GOTO 10

Run this program, adjust the volume on your TV, and enter numbers
between 1 and 255 for the frequency F and the duration D of a
musical tone. You will have to press after each number. The
first number you enter determines the pitch, with lower numbers
producing a lower pitch. The second number sets the duration of the
tone, with 1 being a short note and 255 being a very long note. To play
a music scale, enter the numbers below.

When you run the program, the computer will print a question mark.
Type the first number to select the frequency. Then the computer will
type a double question mark. Type the second number to select the
duration. With both numbers entered, the computer will play the note.

89, 2
108.
126,
133,
147,
dRo.ck
170.
176.

NNNNNDNDDN

155

Lesson 19: Music Teacher (continued)

ﬁ

Experiment 2: Do-Re-Mi
Type [NI[E]W and press [ENTER] to clear the previous program, then
enter this new program that plays a musical scale when you input the
numbers 1 through 8.
Line 200 sets the variable N equal to the number you input. The
instructions beginning at Line 600 convert N to a frequency number
that matches a note in the musical scale. The sound is created with
frequency 7 and duration 2.

200 INPUT N

600 REM ... PRINT & PLAY

610 PRINT N

620 IF N=1 THEN F=89

630 IF N=2 THEN F=108

640 IF N=3 THEN F=125

650 IF N=4 THEN F=133

660 IF N=5 THEN F=147

670 IF N=6 THEN F=159

680 IF N=7 THEN F=170

690 IF N=8 THEN F=176

700 SOUND F,2

710 GOTO 200
Run this program and enter numbers from 1 to 8 to play a musical scale.
As before, you will have to press the |[ENTER| key after each number.
Lines 600 to 690 are a look-up table that converts these numbers into

frequency numbers that match the scale in the key of C. To play a
tune, try these numbers: 3, 2, 1,2, 3,3, 3,2, 2, 2, 3, 5, 5.

Experiment 3: Input Note

You can eliminate using the ENTER key after each note with this next
change. The INKEYS$ command reads the ASCII value of any key that
is pressed, and does not wait for the ENTER key. Line 220 converts
this ASCII value into a number between 1 and 8.

156

Lesson 19: Music Teacher (continued)
“

200 REM ... INPUT NOTE
210 N$=INKEYS$:IF N$="" GOTO 210
220 N=ASC(N$)-48

Run this version of the program and see that the computer keyboard is
much more like a piano or organ with this change.

The flowchart in Figure 1 on page 168 shows what the program is
now doing. The INPUT NOTE section takes a key from the keyboard
and sets N equal to the number typed. Then the PRINT & PLAY
section converts the number into a frequency and plays the note with
a duration of 2.

Here is a complete listing of the program in Figure 1:

200 REM ... INPUT NOTE ..
210 N$=INKEYS:IF N$="" GOTO 210
220 N=ASC(N$)-48

600 REM ... PRINT & PLAY ...
610 PRINT N

620 IF N=1 THEN F=89
630 IF N=2 THEN F=108
640 IF N=3 THEN F=125
650 IF N=4 THEN F=133
660 IF N=b THEN F=147
670 IF N=6 THEN F=159
680 IF N=7 THEN F=170
690 IF N=8 THEN F=176
700 SOUND F.2

710 GOTO 200

Experiment 4: Add Subroutine

Lines 600-710 are a set of instructions that can be used in any program
to convert a series of numbers into notes. You will use these
instructions in two places in the final program. Whenever you have a
set of instructions like these that are used more than once in a
program, it can be helpful to create a subroutine.

The instruction GOSUB 600 tells the computer to transfer the program
to Line 600. When the computer reads the word RETURN, it transfers
the program back to the line following the GOSUB. Add these lines to
your program to create the subroutine:

230 GOSUB 600
240 GOTO 200

710 RETURN

157

Lesson 19: Music Teacher (continued)

— > 0V 00007

158

If you run the program you will see that it works exactly the same as
before. The flowchart in Figure 2 on page 169 shows how the flow of
the program has changed, however, with the PRINT & PLAY section
acting as a subroutine, rather than part of the main program. This
will be an advantage later, when you will use the subroutine again.

Experiment 5: Create a Game

Look ahead to Figure 3 on page 170 and see how the program
becomes a game by adding four short program sections. Enter these
next lines to form the START section of the program. This section
will create an array S(15) to hold numbers representing notes in a
tune, set the total number of notes in the tune T to O, clear the
screen, and print the title.

10 REM ... MUSIC TEACHER
20 DIM S(15)

30T=0

40 CLS

50 PRINT ~ ... MUSIC TEACHER

The ADD A NEW NOTE section adds a random note to the song by picking
a random number from 1 to 8 and storing it in the array at position S(T).

100 REM ... ADD A NEW NOTE

110 CLS

120 T=T+1

130 S(T)=RND(8)
These instructions cycle once for each note in the song. They send the
computer to the PRINT & PLAY subroutine to play the note and print

its number on the screen. After the song is played, the screen is
cleared.

150 REM ... PLAY SONG
160FORL=1TOT

170 N=S(L):GOSUB 600
180 NEXT L

190°CLS

Lesson 19: Music Teacher (continued)
Pt e T G L e s e e e e e A S T e R R P

These next few instructions create a loop so that the INPUT NOTE
section cycles once for each note in the song. The PRINT & PLAY
subroutine is used to play the note typed on the keyboard. If any note
doesn’t match, the computer starts over with a new tune. If there are
no mistakes, the computer goes to Line 100 to add another note to

the tune.

206 FORL=1TO T

230 GOSUB 600

240 IF N< >S(L) GOTO 30
250 NEXT L

260 GOTO 100

Now run the game. The computer will pick a random note, play it, and
print its number. Match the note on the keyboard and the computer will
play a two-note song for you to copy. Try to copy as many notes as you
can. If you make a mistake, the computer will start over with a new tune.

In the next few experiments, you will add several features including a
display that shows you the music being played and some sound
effects. You can continue to expand this software or load the final
program from the Lesson 19 cassette.

How It Works

Here is the complete program listing. This program is shown in
Figure 3. The subroutine beginning in Line 600 is used two places in
the program. In the PLAY SONG section, the variable N is set equal
to each number in the array. The subroutine converts N into a
frequency and plays the note. The INPUT NOTE section also uses the
subroutine to play the note. Here, N is set equal to the key typed on
the keyboard before the subroutine is used. In both cases, the variable
N stored the number of the note being played.

10 REM ... MUSIC TEACHER
20 DIM S(15)

30 T=0

40 CLS

50 PRINT ” ... MUSIC TEACHER

100REM ... ADD A NEW NOTE
110 CLS

120 T=T+1

130 S(T)=RND(8)

150 REM ... PLAY SONG

159

Lesson 19: Music Teacher (continued)

M

160FORL=1TO T

170 N=S(L):GOSUB 600
180 NEXT L

190 CLS

200 REM ... INPUT NOTE

206 FORL=1TOT

210 NS=INKEYS$:IF N$="" GOTO 210
220 N=ASC(Ns$)-48

230 GOSUB 600

240 IF N< >S(L) GOTO 30

250 NEXT L

260 GOTO 100

600 REM ... PRINT & PLAY
610 PRINT N

620 IF N=1 THEN F=89
630 IF N=2 THEN F=108
640 IF N=3 THEN F=125
650 IF N=4 THEN F=133
660 IF N=5 THEN F=147
670 IF N=6 THEN F=159
680 IF N=7 THEN F=170
690 IF N=8 THEN F=176
700 SOUND F,2

710 RETURN

Experiment 6: Add a Delay

There are two places where a slight time delay in the program makes
it easier to use. To create a delay, make a one-line program loop, like
this:

FOR X=1 TO 300:NEXT X

When you type this instruction and press the key, the
computer counts to 300 before returning the cursor and the OK to
the screen. These two instructions add a similar pause before the
computer plays the song and erases the notes from the screen.

Add these instructions, play the game, and see if you prefer these
slight delays. You can use a similar instruction to add a pause to any
program. For longer or shorter times, change the number 300.

155 FOR DLY=1 TO 300:NEXT DLY
185 FOR DLY=1 TO 300:NEXT DLY
The variable DLY was used instead of a single letter variable such as X

to make delay lines like these easy to see in a program listing and to
avoid conflict with other variables used in the program.

160

Lesson 19: Music Teacher (continued)
B e e e P B e e et e S N B e e) S S0 P

Experiment 7. OOPS!

This set of instructions adds two new features: sound effects and
automatic repeats for up to three mistakes. When you play a wrong
note, the computer will tell you about it with sound effects. If you’ve
made less than three errors, the program plays the tune again and
gives you another chance to guess it correctly.

First change Line 240 so that the computer goes to this section if the
note you input does not match the next note in the song. Then add the
section at Line 300 to create the sound.

The variable M is used to keep track of the number of mistakes. Start

with M=0. For each error, M increases by 1. If you get the song right,
M is set equal to zero in Line 255 and the computer adds a new note.

Add these instructions to change the program as shown in Figure 4.
The improved graphics and the YOU WIN section are added in the next
experiments.

240 IF N >S(L) GOTO 300

300 REM ... OOPS!

310 FOR L=F-8 TO 1 STEP -8

320 SOUND L.1

330 NEXT L

340 M=M+1

350 IF M<3 GOTO 150 ELSE 30

30 T=0:M=0

255 M=0

Experiment 8 Music Tutor

It is much easier to guess the notes if you can see them printed in
standard music notation. While this addition to the program only
prints the numbers, not pictures of the notes, on the music staff, the
positions may help you guess the tune.

A new subroutine will be added to print a musical staff on the screen.
The scale is in the key of C and looks like this:

161

162

Lesson 19: Music Teacher (continued)

First use GOSUB instructions to call the subroutine from two places

in the program. Lines 151 and 204 each use the subroutine to print an
empty staff on the screen and clear all the notes. This is done before

the computer plays the song and again before the notes are copied.

Line 830 prints a dotted line and then a full line of blank spaces. When
this line is printed in a program loop, it erases all the notes on the
screen, leaving the five lines and five spaces. Copy this line exactly.
There are 32 dashes followed by 31 spaces inside the quotation marks.
Notice on your screen that the dashes exactly fill the screen and that
the quotation marks are lined up vertically.

Now enter the two instructions that call the subroutine, and the
subroutine:

151 GOSUB 800

204 GOSUB 800

800 REM ... ERASE NOTES
810 PRINT @64

820 FOR L=1TO b5

830PRINT "— — oo —

840 NEXT L
850 PRINT

860 RETURN

These next two instructions that look like comic book swear words are
used to print a number on the screen for each note that is played. The

Lesson 19: Music Teacher (continued)

math is used to position the number up and down to match the music
scale, and move it left and right to match its place in the song.

Lines 110 and 190 are removed because it is no longer necessary to
clear the screen.

610 IFN<>1 THEN PRINT @448-N=32
+L+2,CHR$(N+48);

615 IF N=1 THEN PRINT @447-N+32+
L«2, "=";CHR$(N+48).;"-";

110

190

How It Works

LINES 610 and 615 position a number on the screen. If the number
is 1, the note is printed with a dash on both sides, like this:

—1—

The variable N is a number from 1 to 8 that matches a note in the
musical scale. Line 610 calculates the position in terms of location
448, near the lower-left corner of the screen. It moves up (negative
direction) one row times the value of N. If N=3 for example, it moves
up three rows on the screen. Then it moves right a distance 2+L, or
two positions on the screen for each position in the song.

When the final position is calculated, the computer prints the number,
using its ASCII value. This extra step is done instead of just using
PRINT N because it does not eliminate the space before and after
numbers that are printed on the screen.

LINE 615 is used if N=1. It calculates from location 447, one position
to the left of Line 610, and prints a dash before and after the number.

Experiment 9: You Win!

This final addition adds “positive reinforcement” for playing the game
by playing a special tune if you get all 15 notes right.

In order to change the sound, it is necessary to change Line 700 where
the sound is created. This instruction now says SOUND F,2. Instead
of using a duration of 2, this instruction makes the duration the
variable D:

700 SOUND F.D

— 163

Lesson 19: Music Teacher (continued)

r

Set D equal to 3 at the beginning with this change:

30 T=0:M=0:D=3
The next instruction tests to see if all 15 notes have been guessed.
The Figure 4 flowchart on page 171 shows how this line changes the
program:

260 1F T=15 GOTO 900 ELSE 100

This section sets D=1 and plays the tune three times, as fast as
possible. The program pauses with a request to try again.

900 REM ... YOU WIN!I
910 FOR A=1TO 3

920 FOR B=1TO 15

930 N=§(B):D=1

940 GOSUB 620

950 NEXT B:NEXT A

960 PRINT @452, "TRY AGAIN (Y.N)?

970 X$=INKEYS$:IF X$="" GOTO 970

980 IF X$="Y" GOTO 30 ELSE CLS

Experiment 10: Music Teacher

You can build this program by following the experiments in this
lesson or by loading the Lesson 19 tape with [CJ[L][OI[AlD].

When you run the program you will see the five bars of a musical
scale. The computer will pick a note and briefly flash a number on the
screen. Try to see the number and repeat it by pressing one of the
keys.

Guess correctly and the computer will add another note to the tune
and play it again. Make a mistake and the tune repeats for another
try. Three mistakes on the same note and a new, one-note tune begins.

If you can get the complete sequence of 15 notes right, the computer
will play it back three times at triple speed.

164

Lesson 19: Music Teacher (continued)
e R B B e R e S R R R TR

How It Works

The Figure 4 flowchart shows what the computer does while
running Music Teacher’s Tune. The complete listing follows these
descriptions.

LINES 10-50 dimension an array S(15) to hold numbers for each note.
The total number of notes in the song and number of missed notes are
set equal toO. The note duration D is set to 3.

LINES 100-130 add a new note to the program by increasing T and
setting the next location in the array equal to a random number
between 1 and 8.

LINES 150-185 play the song with a loop that cycles once for each
note. On each cycle, N is set equal to a number in the array. Then
the subroutine at Line 600 converts N to a frequency number and
plays the note. Short delays are used before starting the song and
before clearing the screen.

LINES 200-260 input the note typed on the keyboard. The INKEY$
function reads the key directly, without use of the ENTER key. The
variable N is set equal to the value of the key typed. If this value
does not match the next note in the song, the program goes to OOPS!

LINES 300-350 create a falling tone if the guess was wrong. The STEP
function in the loop allows it to count backwards, decreasing L and
the frequency. If this mistake is not the third, the program goes to
Line 150 to play the song again. Miss three times in a row and the
program starts over — with a one-note song to copy.

LINES 600-710 print and play the note. It is printed at the correct
location by either Line 610 or Line 615. The look-up table then
converts N into a number corresponding to the correct pitch. The
SOUND command converts the number into a tone whose duration is
set by B.

LINES 800-860 erase the notes on the screen by printing a set of lines
and spaces. This subroutine is called by the PLAY SONG and INPUT
NOTE sections of the program.

LINES 900-980 are a prize for getting all 15 notes correct. The double
loop plays all 15 notes 3 times, as fast as possible. The speed increase
is caused by changing D, the duration of the note played in Line 700.
the ending sequence is the standard module, described in Section 3,
page 215.

Here is the complete listing:

10 REM ... MUSIC TEACHER

20 DIM S(15)
30 T=0:M=0:D=3

165

Lesson 19: Music Teacher (continued)
—

40 CLS

50 PRINT ~ ... MUSIC TEACHER
100 REM ... ADD A NEW NOTE

120 T=T+1

130 S(T)=RND(8)

150 REM ... PLAY SONG

161 GOSUB 800

155 FOR DLY=1 TO 300:NEXT DLY
160 FORL=1TO0 T

170 N=S(L):GOSUB 600

180 NEXT L

185 FOR DLY=1 TO 300:NEXT DLY

200 REM ... INPUT NOTE

204 GOSUB 800

206 FOR L=1TOT

210 NS=INKEYS$:IF N$="" GOTO 210
220 N=ASC(N$)-48

230 GOSUB 600

240 IF N< >S(L) GOTO 300

250 NEXT L

255 M=0

260 I1F T=15 GOTO 900 ELSE 100

300 REM ... OOPS! ...

310 FOR L=F-8 TO 1 STEP -8
320 SOUND L.1

330 NEXT L

340 M=M+1

350 IF M<3 GOTO 150 ELSE 30

600 REM ... PRINT & PLAY ...
610 IF N<>1 THEN PRINT @448-N+32
+L*2,CHR$(N+48);

615 IF N=1 THEN PRINT @447-N*32+
L«2."—";,CHRS$(N+48);"-";

620 IF N=1 THEN F=89

630 IF N=2 THEN F=108

640 IF N=3 THEN F=125

650 IF N=4 THEN F=133

660 IF N=5 THEN F=147

670 IF N=6 THEN F=159

680 IF N=7 THEN F=170

690 IF N=8 THEN F=176

700 SOUND F.D

710 RETURN

166

Lesson 19: Music Teacher (continued)

ﬁ

800 REM ... ERASE NOTES

810 PRINT @64

820 FOR L=1TO b

830 PRINT "—m——— —— — — — —— ——

840 NEXT L
850 PRINT
860 RETURN

900 REM ... YOU WIN!

910 FORA=1TO 3

920 FOR B=1TO 15

930 N=S(B):D=1

940 GOSUB 620

950 NEXT B:NEXT A

960 PRINT @452,"TRY AGAIN (Y.N)?

970 X$=INKEY$:IF X$="" GOTO 970
980 IF X$="Y" GOTO 30 ELSE CLS

167

168

Lesson 19: Music Teacher (continued)

MUSIC
TEACHER
FIG. 1

200-220 Y

KEYBOARD

| INPUT
NOTE

600-710

PRINT &
PLAY

-

200-240

KEYBOARD

Lesson 19: Music Teacher (continued)

MUSIC
TEACHER
FIG. 2

\

_,\

INPUT
NOTE

600-710

PRINT &
PLAY

—

169

170

Lesson 19: Music Teacher (continued)

10-50

100-130

150-190

KEYBOARD

MUSIC
TEACHER

FIG. 3

oo -

START
\
ADD A
NEW NOTE
PLAY
SONG BN 600-710
A Y
~{| PRINT &
L] PLAY
30-50
START
OVER

Lesson 19: Music Teacher (continued)

MUSIC
TEACHER
FIG. 4

10-50 START
ADD A
100-130 | NEW NOTE
) 800-860
PLAY ERASE
150-185 SONG R™~===-- 4| NOTES
% /
A /
AY /
N 7
\/
A
/7 N\
/ \
/7 N\ 600-710
4 \

________ s PRINT &
KEYBOARD PLAY

300-350

OOPS! p----- - J’\ J&‘

350

<3
MISTAKES
2

START
OVER

900-980

YOU WIN! ke J\

171

Lesson 20: Car Calculator
_

Lesson 20: Car Calculator

Branching and Special Calculators

This lesson’s software creates a special calculator for solving problems
about distance, rate, time, and gas mileage. While you probably
wouldn’t have any trouble finding these answers with a simple
calculator, this lesson will show how you can write a program to
create any special calculator you wish. If you know the formulas for
solving problems, you can use a program like this one to input the

data and create a printout of the results.

Experiment 1: Distance Calculator

This short program calculates distance traveled when the time and rate
of speed are known. Type [E][E] to erase any program in memory and
enter these instructions:

300 REM ... DISTANCE
305 PRINT
310 INPUT “ TIME IN HOURS"™,T

320 INPUT “ RATE IN MILES PER HO
UR";R

330 D=R+T
335 PRINT

340 PRINT ~ AT"R.;"MILES PER HOU
R

350 PRINT “ FOR";T.;"HOURS”

360 PRINT “ YOU WILL TRAVEL"

370 PRINT D;"MILES”

Run the program and enter numbers for T and R. The formula in
Line 330 calculates the answer. A complete printout is created with
Lines 335-370.

If you enter mL__HE for the time and [6](6] for the rate, the screen
will show:

TIME IN HOURS? 1.5
RATE IN MILES PER HOUR? 55

173

Lesson 20: Car Calculator (continued)

AT 55 MILES PER HOUR
FOR 1.5 HOURS

YOU WILL TRAVEL

82.5 MILES
OK

Experiment 2: Time Calculator

Add this section and calculate the time required when the distance
and rate are known. These instructions work exactly the same way as
before to input values for the variables, calculate the answer with a
formula, and print the results.

400 REM ... TIME
405 PRINT
410 INPUT “ DISTANCE IN MILES”;D

420 INPUT ~ RATE IN MILES PER HO
UR"R

430 T=D/R
435 PRINT

440 PRINT “ TRAVELING”;D; "MILES”

450 PRINT “ AT";R:; "MILES PER HOU
R

460 PRINT “ WILL TAKE YOU”
470 PRINT T;"HOURS”

Instead of running the program, type [G][O]T][0][][4][0J[0]. The computer
will run the second section, starting at Liine 400. Input 313 miles for
the distance and 55 MPH for the rate. The printout will show:

DISTANCE IN MILES? 313
RATE IN MILES PER HOUR? 55

TRAVELING 313 MILES

AT 55 MILES PER HOUR

WILL TAKE YOU

5.69090909 HOURS
oK

In Experiment 4 you will see how to round off this answer automatically
to 5.7 hours.

174

Lesson 20: Car Calculator (continued)
e R i e e T S B e S e e N T T S I R I e s e o e S T S R R T S R e

Experiment 3: Speed Calculator

There is nothing new or different here. With new variables to input and
a new formula, this is the same program as before. Add these lines to
calculate average speed:

500 REM ... SPEED

5056 PRINT

510 INPUT ~ DISTANCE IN MILES”;D

520 INPUT “ TIME IN HOURS™;T

530 R=D/T

535 PRINT

540 PRINT “ TRAVELING”;D; "MILES”

550 PRINT “ IN"T,"HOURS"

560 PRINT “ YOU WILL AVERAGE"

570 PRINT R; "MILES PER HOUR"

To test this segment of the program, enter [G][O][T][OJ[][6][0][0]. Find out
what your average speed would have to be to travel from here to the
sun in one day with these inputs:

DISTANCE IN MILES? 93000000
TIME IN HOURS? 24

TRAVELING 93000000 MILES

IN 24 HOURS

YOU WILL AVERAGE

3875000 MILES PER HOUR
OK

Experiment 4: Rounding Off Answers

To avoid answers such as 5.69090909 HOURS, round off the results
of any division problems with this programming module. These two
lines will round off the time T and rate R to the nearest tenth — or
to one decimal place:

432 T=INT(T+«10+.5)/10

532 R=INT(R«10+.5)/10

175

Lesson 20: Car Calculator (continued)

—-

After adding these lines, test the rounding off. Enter [G][O][T][0][][4][0][O]
and then enter [3][1][3] for the miles, @@ for the rate. This time,
instead of printing 5.69898989, the computer will round off and print

5.7 hours as the answer.

Experiment 5: Variable Names

In most of these programs single-letter variables have been used.

It is convenient to use D for distance, R forrate, T for time, and
similar letters to name variables in a program. You can also use
complete names, starting with a letter, such as: DISTANCE, RATE,
TIME, or even UNCLEDICK. While the names you use may be of any
length, the computer reads only the first two letters of a variable
name.

In this final section of the program, the variables are named: MILES,
GAL, and MPG. Notice that well-chosen variable names can make a
program easier to read.

To see that long variable names really work, do this:

MYSTERYNUMBER=5
oK

PRINT MY

5

oK

Now add this ecology-minded section to your program and compute gas
mileage easily:

600 REM ... MPG
605 PRINT

610 INPUT “ DISTANCE IN MILES":M
ILES

620 INPUT "~ FUEL IN GALLONS";GAL
630 MPG=MILES/GAL

640 MPG=INT(MPG*100+.5)/100
645 PRINT

650 PRINT “ TRAVELING";MILES;"MI
LES™

660 PRINT “ ON":GAL; "GALLONS OF
FUEL"

176

Lesson 20: Car Calculator (continued)

ﬁ

670 PRINT “ YOU WILL AVERAGE"
680 PRINT MPG;”"MILES PER GALLON"
Test this section with @@@D@@@ and see that it works the same

way as the others.

Experiment 6: Menu

There are two things you need to do to combine these sections and create
a useful program. This menu section will start the computer in the right
place, and the next experiment will provide an ending for the program.

100 REM ... MENU ...

110 CLS:PRINT:PRINT

120 PRINT* ... CAR CALCULATO
R o

130 PRINT:PRINT

140 PRINT 1. DISTANCE TRAVEL
ED”

150 PRINT 2. TIME REQUIRED"”
160 PRINT ~ 3. AVERAGE SPEED”
170 PRINT 4. GAS MILEAGE”

180 PRINT:PRINT

190 PRINT SELECT (1-4)°
200 K$=INKEYS$:IFK$="" GOTO 200
210 SEL=ASC(K$)-48

220 CLS

230 ON SEL GOTO 300,400.500.600

240 GOTO 100

177

Lesson 20: Car Calculator (continued)
—

Experiment 7: More?

The menu will direct the computer to the appropriate section. With the
following instructions, the computer will ask if you want another calcu-
lation. Depending on your response, the program will go back to the
menu, or stop.

380 GOTO 700
480 GOTO 700

580 GOTO 700

700 REM ... MORE?

7056 PRINT

710 PRINT ANOTHER CALCULATIO
N (Y.N)?"

720 K$=INKEYS$:IF K$="" GOTO 720
730 IF K$="Y" GOTO 100 ELSE CLS

Now your program is complete. Run it and see that the menu directs the
computer to the right section for inputting data and printing results.

Experiment 8: Car Calculator

This program is recorded on the Lesson 20 cassette. You can build the
program from scratch, following the experiments in this lesson, or you
can load the cassette and run the final program.

The standard program menu with four choices is displayed. Press
one of these keys and the computer requests the first input. Type a
number and press . Answer the second question by typing

a number and pressing again. The final printout will repeat
the data and state the result.

While these calculations are trivial, this program shows several
important techniques for building a special calculator by using a menu
and a series of formulas. With only a few changes in the wording

and in the formulas, you could create your own software for real estate
calculations, loans and interest tables, English and metric conversion,
cost or material estimates, and many other calculations.

How It Works

The flowchart on page 181 shows how this program is organized,
with a menu, four sections for inputting data and printing the results,

178

Lesson 20: Car Calculator (continued)
. _____|

and a final section that returns to the menu if another calculation is
requested.

Here is the complete listing:

10 REM ... CAR CALCULATOR

100 REM ... MENU

110 CLS:PRINT:PRINT

120 PRINT ... CAR CALCULATO
Roe.a

130 PRINT:PRINT

140 PRINT 1. DISTANCE TRAVEL
ED”

150 PRINT 2. TIME REQUIRED”
160 PRINT 3. AVERAGE SPEED”
170 PRINT 4. GAS MILEAGE”
180 PRINT:PRINT

190 PRINT ~ SELECT (1-4)”

200 K$=INKEY$:IFKs="" GOTO 200
210 SEL=ASC(K$)-48

220 CLS

230 ON SEL GOTO 300.400.500,600
240 GOTO 100

300 REM ... DISTANCE

305 PRINT

310 INPUT ~ TIME IN HOURS™;T
320 INPUT ~ RATE IN MILES PER HO
UR™R

330 D=R+T

335 PRINT

340 PRINT “ AT";R"MILES PER HOU
R"

350 PRINT “ FOR™;T;"HOURS”

360 PRINT “ YOU WILL TRAVEL"
370 PRINT D; "MILES”

380 GOTO 700

400 REM ... TIME

405 PRINT

410 INPUT ~ DISTANCE IN MILES™;D
420 INPUT “ RATE IN MILES PER HO
UR".R

430 T=D/R

432 T=INT(T*10+.5)/10

435 PRINT

440 PRINT “ TRAVELING"”;D;"MILES”
450 PRINT “ AT";R:"MILES PER HOU
R"

460 PRINT “ WILL TAKE YOU”

470 PRINT T.;"HOURS"

480 GOTO 700 179

Lesson 20: Car Calculator (continued)

500 REM ... SPEED

505 PRINT

510 INPUT “ DISTANCE IN MILES”;D
520 INPUT “ TIME IN HOURS";T
530 R=D/T

532 R=INT(R#10)+.5)/10

535 PRINT

540 PRINT “ TRAVELING";D;"MILES”
550 PRINT “ IN";T;"HOURS"

560 PRINT “ YOU WILL AVERAGE"
570 PRINT R;"MILES PER HOUR”

580 GOTO 700

600 REM ... MPG

605 PRINT

610 INPUT “ DISTANCE IN MILES™:M
ILES

620 INPUT “ FUEL IN GALLONS";GAL
630 MPG=MILES/GAL
640 MPG=INT(MPG+100+.5) /100

645 PRINT

650 PRINT “ TRAVELING"”;MILES:"MI
LES”

660 PRINT “ ON";GAL:"GALLONS OF
FUEL"

680 PRINT MPG;"MILES PER GALLON"
700 REM ... MORE?

705 PRINT

710 PRINT ANOTHER CALCULATIO
N (Y.N)?"

720 K$=INKEYS:IF K$="" GOTO 720

730 IF K$="Y" GOTO 100 ELSE CLS

180

Lesson 20: Car Calculator (continued)

CAR
CALCULATOR
FIG. 1

100-240 ¥
...CAR CALCULATOR...
1. DISTANCE
2. TIME
KEYBOARD —X MENU f======= 3. SPEED
SELECT (1-4)

300-380

400-480
DISTANCE
& RATE
700-730
PRINTOUT [-A
1925 MILES
ANOTHER
CALCULATION (Y-N)

DISTANCE
& TIME

600-680

MILES &
GALLONS

181

Lesson 21: Graphics
—

Lesson 21: Graphics

Video Art and Graphics Characters

There are many ways you can use the graphics capabilities of your
Color Computer. For example, you can create a message center, an
electronic billboard, charts and graphs, video art, games, and even
cartoons on your TV.

This lesson contains special software that helps you include color
drawings, pictures, and art in your computer programs. You can use
this programming tool to make full color signs with large and small
letters, charts, or even pictures.

Experiment 1: Graphics

Begin by loading the Lesson 21 cassette program. When you run the
program you will see this menu:

GRAPHICS

1. GRAPHICS CHARACTERS
2. BILLBOARDS & SIGNS
3. ART & ANIMATION

SELECT (1-3)

Graphics Characters, the first selection, is a programmer’s tool. This
program makes it easier for you to add pictures, graphics, and cartoons
to your programs. You can load and run this program each time you
wish to convert a drawing on graph paper to an image on the screen.
This software makes programming pictures much easier because it
shows you exactly what the screen will display for each square on the

graph paper.

Billboards & Signs, the second selection, is a simple example of a
screen with large and small letters. By following this example, you
can easily add full screen messages to your programs.

Art & Animation, the last selection, displays a more detailed drawing
of a space person with a computer voice. With careful work, you could
use this technique to create a short cartoon or “film strip.” Before you
imagine anything like the effects in “Star Wars”, “Snow White”, or

the latest computer graphics TV commercial, remember that your
Color Computer can only draw colored dots — much like needlepoint

or paint-by-numbers sets.

To see all three selections on the menu, press the number and read the
description below. If you are looking at Section 1 and wish to see

183

Lesson 21: Graphics (continued)

—

another selection, press to stop the program, then type

[E@[E and press to start with a new menu. If you are looking
at Sections 2 or 3 and wish to make another selection, just press any
key and the program will return to the menu automatically.

Experiment 2: Graphics Characters

Select [1] to see Graphics Characters, the program that helps you add
pictures to programs. The screen will show 16 graphics shapes, with
their numbers. This collection of shapes is printed in orange, with a
black background. Now press number [2] and the screen will show
these same shapes as they appear in pink, with a black background.
Notice that shapes 157 and 158 lonk like eyes.

Press each number from 2 to 8 on the keyboard and see how these 16
shapes can be printed in each of the eight colors. For each shape, in
each color, there is a specific number you will use. With this program
running in your computer, it is easy to copy a drawing on graph paper
to an image on the screen. With these 128 graphics symbols (16
shapes in 8 colors) you can print a wide variety of pictures.

Experiment 3: Character Numbers

The numbers next to each graphics character are used to print the
character on the screen. The statement at the bottom of the screen is
an automatic converter to show you what numbers are associated with
each of the keys on the keyboard. Press the letter [A] and see that its
character number is 65. Letter [Z] is the number 90, the up arrow

is 94, and the question mark is number 63. This feature is useful
whenever you wish to convert a letter, number, or punctuation mark to
its character number. These numbers are called ASCII numbers and

are used by most computers to represent keyboard and graphics
characters.

Experiment 4: Billboards & Signs

For a simple example of a picture printed with these graphics shapes,
press [BREAK]| to stop the program. Then run the program again.
When the menu appears. select number [2].

Your screen will show a large HI! with ... GRAPHICS ... in smaller
letters. This is a simple example to show how you can use large and
small letters on the screen at the same time. You may have seen the
in-store demonstration of the Color Computer that uses similar
techniques to create a series of messages on the TV.

Figure 1 on page 190 shows how these displays are created. The TV
screen is divided into 32 columns (0 to 31) and 16 rows (0 to 15). The
characters you saw in the first experiment can be placed in any of

184

Lesson 21: Graphics (continued)
—

these squares. For this example, a section of the screen from column
11 to column 20 and from row 4 to row 8 is used to print the word HI!.

Each block inside this section is assigned a number. Compare the
picture on your screen with Figure 1 and see which numbers are used
for each color. Each number represents a solid square of color.
Squares with number 143 are used for the background. Squares
numbered 239 form the H. number 207 squares make the |, and
number 159 squares are used for the exclamation point.

The first step in creating a picture like this is to sketch the design on
graph paper, as shown in Figure 1. Then the colors are selected and
the numbers for each block are filled in. It will probably help to use a
work sheet to show what numbers are used in each block, like this:

Work Sheet for “HI!”

o e et cmen e tan oo
4 EE 239 143 143 239 143 143 207 143 143 159
5 :E 239 143 143 239 143 143 207 143 143 159
6 E 239 239 239 239 143 143 207 143 143 159
7 E 239 143 143 239 143 143 207 143 143 143
8 E 239 143 143 239 143 143 207 143 143 159

If you look closely at the work sheet you can see the letters H andI and
the exclamation point outlined in the numbers 239, 207, and 159.

It is much easier to fill in this work sheet if you use the Graphics
Characters design aid, selection (1] on the menu, for selecting graphics
characters. Return to the menu by pressing any key, then select

option [1] to return to Graphics Characters. You will see the 16

shapes in orange. This drawing is made up of solid color blocks, as
shown in the lower-right hand corner. Press now and see that
shape number 239 is a solid square in light blue. Press (3] and see

that number 175 is a dark green square. Press [2] and see that 159 is
solid pink. (The colors will vary, depending on your TV and your
perception.)

The final step, transferring the numbers on your work sheet to the
program, is done in a series of data statements. To reproduce your
own pattern, copy these instructions and substitute your numbers for
the ones shown. The instructions for writing HI! look like this in the
program: (The data instructions shown below are not wrapped around

185

186

Lesson 21: Graphics (continued)

or continued on the next line, as they actually appear when you list
the program on your screen.)

2000 REM . . HI!

2010 CLS

2020 FOR Y=4 TO 8

2030 FOR X=11 TO 20

2040 READ C

2050 PRINT @32+Y+X,CHR$(C);
2060 NEXT X: NEXT Y

2104 DATA 239.143.143.239.143.143.207.143,143.159
2105 DATA 239.143.143.239.143.143,207 143.143.1569
2106 DATA 239.239.239.239.143.143.207.143,143.1569
2107 DATA 239,143.143,239.143.143.207.143.143.143
2108 DATA 239,143.143.239.143.143,207.143.143.159

The numbers 4 and 8 in Line 2020 tell the computer which columns
to use and the numbers 11 and 20 in Line 2030 define the rows. Line
2040 sets the variable C equal to the numbers in the data statements.
Then these numbers are plotted on the screen to cover a square area
and spell HI!. The data statements are printed in five separate lines
so that it is easier to edit the program to make changes or correct any
errors in the final picture.

The added message in small letters is a standard print statement that
begins in row 11, column 8. This is printed with the following
instruction:

2070 PRINT @32+11+8, “. .. GRAPHICS

The instructions on Lines 2080 and 2090 hold the computer at this point
until you press a key. Then the program runs from the beginning
again, printing the menu as before.

2080 R$=INKEYS:IFR$="" GOTO 2080
2090 RUN

Experiment 5: Art & Animation

Figure 2 on page 191 shows how graphics shapes in addition to

solid blocks of color can be used in creating a more detailed drawing.
The principle is exactly the same as in printing HI!, except that
several kinds of graphics shapes in addition to solid blocks of color
are used.

If you are watching HI!, press any key to return to the main menu.
If you are watching Graphics Characters, press [BREAK] to stop the
program and type [R][UJ[N].

Lesson 21: Graphics (continued)

From the menu, select Art & Animation to draw a Space Person. Adjust
the volume control on your TV to hear a lecture about computer
graphics. (Unfortunately, the lecture is in Martian.)

To see how this figure is constructed, return to the Graphics Characters
section of the program. Press any key to return to the menu, then

select number [1]. Now press number [2] and display the characters
from 144, to 159. Two of these characters, numbers 157 and 158, are
used for the eyes of the space person in the drawing. On the Space
Person work sheet below, locate the numbers 158 and 157 in row number
4 (the second row on the work sheet). These characters correspond to
the position of the eyes in the drawing.

Continue comparing the drawing in Figure 2 with the characters on
the screen. The work sheet will help you identify each block by
number. The display on the screen will show you what each number
looks like. Remember to press any number from 1 to 8 to see the
complete selection of graphics characters.

Work Sheet for Space Person

12 13 14 15 16 17 18

3 E 208 211 215 211 219 211 208
4 E 225 223 158 223 157 223 226
5 g 208 220 223 223 223 220 208
6 E 179 179 179 191 179 179 179
7 g 191 176 191 191 191 176 191
8 E 191 176 239 239 239 176 191
9 é 142 128 255 252 255 128 141
10 ; 240 240 255 240 255 240 240
11 E 240 240 255 240 255 240 240
12 g 128 131 139 128 135 131 128

The following portion of the program prints the graphics characters
whose numbers are shown in the Space Person work sheet.

3000 REM ... SPACE PERSON
3010 CLS

187

Lesson 21: Graphics (continued)
——

3020 FOR Y=3 TO 12

3030 FOR X=12TO 18

3040 READ C

30560 PRINT @32+Y+X,CHR$(C);
3060 NEXT X: NEXT Y

3070 DATA 208,211,2156.,211,219,211,208
3080 DATA 225,223,158,223,157,223.226
3090 DATA 208.220,223,223.223,220,208
3100 DATA 179,179,179,191,179,178,179
3110 DATA 191,176.191,191,191,176,191
3120 DATA 191,176,239,239,239,176,191
3130 DATA 142,128,255,252,255,128,141
3140 DATA 240,240,255,240,255,240,240
3150 DATA 240,240,255,240,255,240,240
3160 DATA 128,131,139,128,1356,131,128

Notice that the program listed above is very similar to the program used
for printing HI! . The numbers used in Lines 3020 and 3030 determine
the overall size of the figure drawn on the screen. In this case, the
drawing goes from row 3 to row 12 (Line 3020) and from column 12 to
column 18 (Line 3030). There are more numbers in the data statements
because Space Person is larger than HI!, with more squares to fill in.
Also notice that there is more variation in the numbers because more
kinds of graphics shapes are being used.

After Space Person has been drawn, the computer goes to another
section of the program to create the “lecture.” Line 3085 does the
routing:

3065 GOTO 3200

Experiment 6: Speak & Spiel

This section of the program is a continuing loop that opens and closes
Space Person’s mouth and creates the speech-like sounds. The mouth
animation is done by alternating the equal sign (=) and the dash (—).

The program waits a random length of time, then prints =, makes a
sound, prints —, and waits again. The sound is a random frequency
between SOUND 231 and SOUND 240. The duration is also random and
ranges from 1 to 3. When any key is pressed, the program is RUN again.
This restores the data statements and displays the main menu.

Here is a listing of this section of the program. To duplicate Space
Person’s speech in any program, just copy this idea:

3200 REM ... SPEAK
3210 T=RND(300)
3220 FOR DLY=1 TO T:NEXT DLY

188

Lesson 21: Graphics (continued)
g e e B e B e R e e e e e e R I e i e

3230 PRINT @5%32+15."=";

3240 SOUND RND(10)+230.RND(3)
3250 PRINT @5+32+156.,"-";

3260 R$=INKEYS$:IF R$=""GOTO 320
0

3270 RUN

Experiment 7: On Your Own

Creating your own graphics designs is tedious, but not difficult. With
careful planning you can design longer programs with many pictures
or messages. Begin with a simple drawing that doesn’t contain too
many squares. Copy the drawing on graph paper, using the shapes in
Graphics Characters as a guide.

As a start, try adrawing that is the same size as HI! You can then usethe
program listed in Experiment 4 to draw the figure on the screen, and
change the numbers in the data statements to print the design you
have drawn.

Once you have a design that prints correctly, you can move it to any
location on the screen by changing the row and column numbers. Be
careful to keep the total width and height the same, or you will get
very strange results.

If you wish to print messages or characters from the keyboard, use
PRINT @, as in Lines 3230 and 3250. The background color for all
characters on the keyboard is green.

Time delays are necessary if you wish to pause between pictures or
messages. You can set T equal to the delay you wish and use the
time delay module in Line 3220, or use an input from the keyboard
to continue the program, as in Line 2080. You could also control the
program by using the joystick button to advance to the next picture,
similar to a slide projector.

Many kinds of lettering can be printed with graphics characters. The
examples in Figures 3 and 4 show some of the lettering styles used in
professional computer displays.

189

[39NOIA

08t

121747

‘ 9Th

| 1213

m”uﬁmm,ﬂmwo . 412

(1743

88¢

7 N W W 952

m N W N G W 261

g % B 7 821
.m AM.WHV\ A\MON D J/\m.vr_lv 662 g
a 3 —— | ™~ v9
C 2€
x | | 0

m T€l0€162I8¢1L219262b2iccicd1 2026 T8 TLT9TS TR TETICTTTOT

Sl

14!

£l

4!

Il

ol

190

inued)

Graphics (conti

.
©

Lesson 21

191

¢ 3449NOI4

= RS—

08Y

8hY

91Y

v8¢

| ese

0ce

88¢

96¢

téé

¢6l

091

8¢1

96

9

43

I¢

0¢

62

Le

92

T4

vé

X4

Le

0¢

6T

81

LT

91

ST

b T

Tl

TTOT

Sl

14!

¢l

4!

I

01

: Graphics (continued)

Lesson 21

—

¢ H4NOIA

192

Lesson 22: Player Piano
—

Lesson 22: Player Piano

Music Instruments

This program creates an instrument you can play like a piano. You
type in tunes and the computer plays them back. This hunt-and-peck
method works well on a computer because you can back up and
correct any wrong notes.

If you have tried to add music or even short tunes to your programs,
you know how difficult it is to convert numbers from a frequency table
into notes that sound the way you want them to. This special software
package turns your computer keyboard into a music keyboard, making
it much easier to program music or add songs to your software.

The response time is not as fast as an electric piano, organ, or
synthesizer, but you will be able to replay your music as many times
as you like by pressing a key. When you are satisfied with the results,
this program will print out the frequency table so that you can add the
music to any program.

Experiment 1: Player Piano

Begin by loading the program from the Lesson 22 cassette. When you run
the program you will see this message on the screen:

PLAYER PIANO

Adjust the volume on your TV and press any of the keys in the row that is
closest to you. These keys correspond to the white keys on a piano,
with the letter C and middle C aligned, like this:

Computer keys Z
Piano keys A

Pick out a tune and notice the printing on the screen. If you can’t think
of a tune, play these letters: M[ﬂl The numbers on
your screen are those used with the SOUND command to make the
sounds you hear. The note C, for example, is played when your com-
puter sees this instruction:

SOUND 176.2

Experiment 2: Playback

Now press [P] and get a playback and a copy of the music you just entered.
To play at full speed, without the notes on the screen, press [@.

193

Lesson 22: Player Piano (continued)

_

When in mode P, the computer adds a short time to each note because
it takes time to print the numbers on the screen. Music you copy and
use in a program will be played at the @ speed.

Experiment 3: Clear

To clear the notes from the system means to erase them forever and
make room for something new. Press the [CLEAR] key and see your
composition vanish.

Experiment 4: €-Octave Shift—

The left and right arrows move the keyboard one octave. Press the left
arrow and try entering a short tune. Notice that the keyboard is shifted
one octave down. To shift back again, press the right arrow. Press it
again to play the highest octave.

The keyboard stays where you leave it. You can jump from one end of
the range to the other by pressing the arrow twice.

If you have a critical ear, you will notice that the highest notes in the
top octave are not quite on pitch. You can change the pitch, or make
up any scale you like, by modifying the frequency look-up tables in
the program.

Experiment 5: Electrical Eraser

The up-arrow key on the left has a very useful function in this program.
If you play a wrong note, just press this “back up” arrow and play the
note again. The information on the screen will not change, but the
wrong note will be erased from the memory. Test this yourself by
entering a song you like and using the eraser to back up and remove
mistakes.

Experiment 6: Programming Holds

The zero (0) key is used to hold the note one more beat. After pressing
any of the note keys, press [0] once for each beat you wish to extend
the note. Try this example and see the effect of the zeros after each
note. Press and [2] before you begin. Press [0], not the letter
(O), when you type these characters on the keyboard:

CO0COCCOO0
GOVVOCCOXCO00

Your screen should look like the following:

194

Lesson 22: Player Piano (continued)

e S e S e i e e e e T e e ey s s

PLAYER PIANO

89
89
89
89
117
108
108
89
89
78
89

oONPEENNPRERNPONPMO

Now play the tune with both [P] and . The timing will sound very
similar because the slight additional time required to print the note
on the screen in P mode is not significant with the longer notes.

Experiment 7: Programming Notes

The SOUND command is used to play notes in the TV speaker. The first
column on the screen is the frequency number and the second column

is the duration number. To reproduce this song in a program, just add
these instructions:

SOUND 89.6
SOUND 89.4
SOUND 89.2
SOUND 89.6
SOUND 117.4
SOUND 108.2
SOUND 108.4
SOUND 889.2
SOUND 89.4
SOUND 78,2
SOUND 89,8

Use a line number with each instruction, and place this series

of 11 lines in your program at the spot where someone loses the game,
gets gunned down at the pass, goes bankrupt, has a negative balance,
or whatever.

Experiment 8: Programming Time

The numbers 1-8 control time. To see the effect, just press [1] and
type a few notes. Now press any other number, play a few more notes,
and notice the timing difference. This adjustment sets the beat of the
music, as well as the feel of the keyboard. After trying a few notes at
different times, press again and see how the computer sounds with
changes in the timing notation.

195

Lesson 22: Player Piano (continued)

_

196

For a quick example of high speed playing, select the top octave with
the right arrow, clear Player Piano with |CLEAR|, and type these keys:

2 C B M/ 1
/oSS S 2 M
T MM MM 2
B MBC OO

The screen will show these notes, with the top two notes scrolled off the top:

176
193
204
218
218
218
218
218
204
204
204
204
204
183
204
188
176

ONNNN= =22 a2 N2 == 22 NNNDNN

If you press a wrong key, back up with the up-arrow. You can back up
several notes, if necessary, but you cannot erase notes in the middle
of a song. You can also [CLEAR] and start again.

After your input matches the music, press and hear it at full speed.
This particular tune could be added to a program to announce the winner
of a game or signal the start of a contest.

Experiment 9: Adding Music to a Program

There are two ways you can add your music to a computer program. Any
song with only a few notes can easily be played in a program by using
the SOUND command for each note. The first column on the screen
shows the frequency number and the second column shows the dura-

tion. To add the song you just played, enter the following instructions.
The line numbers you would add to each instruction would depend on

the location you wanted this tune to have in your program.

SOUND 176.2
SOUND 193,2
SOUND 204,2
SOUND 218,2
SOUND 218.1

Lesson 22: Player Piano (continued)
—

SOUND 218,1
SOUND 218.1
SOUND 218.1
SOUND 204,2
SOUND 204.,1
SOUND 204.1
SOUND 204.1
SOUND 204.1
SOUND 193.2
SOUND 204.2
SOUND 193.2
SOUND 176.2

If you have a large number of notes to play, it would be easier to use a
program loop and a data statement, like this:

FOR L=1TO 17

READ F.D

SOUND F.D

NEXT L

DATA 176.2,193.2,204,2,218,2,218,
1.218.1,218.1,218,1,204,2,204.1,2
04.1,204,1,204,1,193.2,204,2.193,
2.176,2

Either method will create the same sound when added to a program. For
short songs, a separate instruction and SOUND command for every

note is easier. Longer songs can be handled more easily if you use the
second method and program a loop with DATA statements. With

either method, each instruction would have a line number matched to

its position in the program.

If you wish to play the same song more than once in a program, you
need to restore the data with a RESTORE instruction.

More Notes With More Memory

Both the program and the notes you have played are stored in the
computer’s memory. If your Color Computer has more than 4K
memory, you can have more than 74 notes stored in your song. If your
computer has the 16K memory expansion, change Line 20 in the
program to allow more storage space for the music.

20 DIM §(1200)

This change allows 1200 numbers to be stored by the program. Since one
number is required for the frequency and one more for the duration,

this means that you can store and play back a song up to 600 notes
long.

197

Lesson 22: Player Piano (continued)

If you run over the note storage limit with either size memory, the
computer will print BS ERROR IN 130. To restore the program, type
@@@D@@ This will allow you to hear and edit the song you
have entered.

Keyboard Summary

Here is a complete diagram of the keyboard and its functions:

... Note Time . .. Hold Octave
1 2 3 4 656 6 7 8 06>

] T H

LZIX]C|V] M| ?
A B CDETFGABSC
[CLEAR] = Erase Song

[Pl = Play Play Fast
= Back Up

Fequency Look-Up Table

This table shows the musical note in the key of C, the typewriter key that
corresponds to that note, and the frequency numbers for all three
octaves. The middle octave is set initially.

KEY K$ OCT1 OCT2 OCT3
F# A 45 153 207
A Z 58 159 210
A# S 69 165 213
B X 78 170 216
C C 89 176 218
C# F 99 180 221
D A% 108 185 223
D# G 117 189 225
E B 125 193 227
F N 133 197 229
F# J 140 200 231
G M 147 204 232
G# K 153 207 234
A s 159 210 236
A# L 165 213 237
B ; 170 216 238
C / 176 218 239

198

Lesson 23: Menus

Lesson 23: Menus

Program Titles and Starting Screens

Your software can begin with a menu, listing a selection of possible
things to do. Examples include the menus in Temperature Converter,
Lesson 15, and in Car Calculator, Lesson 20. At the beginning of each
of these programs, the computer prints a menu and lists several
alternatives. When a selection is made by typing a number, the
computer branches to the correct section of the program.

These menus each serve the same function. The difference is in the words
printed on the screen and in the particular line numbers that are
selected.

Simple Menu Module: Temperature Converter

The menu module used in Temperature Converter looks like this on
your screen:

TEMPERATURE CONVERTER

1. FAHRENHEIT TO CELSIUS
2. CELSIUS TO FAHRENHEIT

SELECT (1,2

If you don’t remember what this menu does, load the Lesson 15 cassette

and run the program again. When you type (1] and press [ENTER], the
program branches to the section that converts fahrenheit temperatures
to celsius. If you select [2] and press [ENTER], the program branches
to a different section and converts temperatures from celsius to
fahrenheit. Notice that the key must be pressed after the
number is entered.

Here is how the menu section of this program is written:

10 CLS:PRINT

20 PRINT ~ TEMPERATURE CONVERTER”
30 PRINT

40 PRINT 1. FAHRENHEIT TO CELSIUS”

50 PRINT ~ 2. CELSIUS TO FAHRENHEIT”

60 PRINT

70 INPUT SELEEGY (1.2)7S

80 CLS:PRINT

90 ON S GOTO 100,200

Where the word PRINT appears, the computer prints any message in
quotes and spaces down one line on the screen. In Lines 10, 30, and 80
the PRINT instruction is used to skip a line. Notice how this creates

199

Lesson 23: Menus (continued)

_

a space after the title, before the SELECT (1.2) line, and at the
beginning of the next frame in the program. These spaces are added
for appearance and don’t actually affect the running of the program.
Details like this can help your programs look better and be easier to
read.

Afterthe menutitle and a list of the selections (Lines 10-60) are printed on
the screen, the INPUT instruction is used to print the select line and
input the number from the keyboard. When the INPUT instruction is
used, the key must be pressed after the number is typed.

You can easily change the information on the screen to match the
actual selections in your program. Additional selections may be
added by adding more lines. As an example, your menu could look
like this:

* COMPUTER CHESS =«
BY RICK PROGRAMMER
ONE-PLAYER GAME
. TWO-PLAYER GAME

CHESS DEMONSTRATION
CHESS TEACHER

pw -

SELECT (1-4)

The number of selections, as well as printing on the screen, can be
adjusted easily. After a number has been entered, the program must
react to the user’s selection.

One way to do this is to use the ON GOTO instruction to send the computer
to a specific line in the program. In Temperature Converter, this
instruction in Line 90 sends the computer to Line 100 if the input is

a [1] and to Line 200 if the input is a @ The sections of the program
beginning at Lines 100 and 200 input the temperature, calculate the
answer, and print the results.

Advanced Menu Module: Car Calculator

The more advanced menu used in Car Calculator has two important
advantages over the Temperature Converter menu. It does not require
the use of the ENTER key after the selection has been typed and it
automatically reprints the menu if a wrong key is pressed. If you
load the Lesson 20 cassette and run the program you will see this
menu on the screen:

200)

Lesson 23: Menus (continued)

—

CAR CALCULATOR

1. DISTANCE TRAVELED
2. TIME REQUIRED

3. AVERAGE SPEED

4. GAS MILEAGE

SELECT (1-4)

Notice that there is no question mark after the SELECT (1-4) line in the
menu. If you press any key from 1 to 4, the program will branch to the
appropriate section. This action is immediate and the ENTER key is
not required. Press any other number or any letter on the keyboard
and the menu will blink, showing that the input does not work.

This menu is much easier to use than the menu in Temperature
Converter. Pressing ENTER after each number is not difficult, but

it is an extra step that you can eliminate with more careful
programming. With new computer users, forgetting to press ENTER
after a selection can cause confusion and make computers seem ‘“hard
to understand.” In a similar way, having the computer blink the menu
if they press a wrong key is a gentle reminder that helps make
computers easy to use.

Compare this listing from Car Calculator with Temperature Converter
and see how these two important features have been added. As before,
you can change the words and the number of selections in your menu
to match any program you write.

100 REM ... MENU

110 CLS:PRINT:PRINT

120 PRINT ... CAR CALCULATOR
130 PRINT:PRINT

140 PRINT 1. DISTANCE TRAVELED"
150 PRINT 2. TIME REQUIRED”
160 PRINT 3. AVERAGE SPEED”
170 PRINT 4. GAS MILEAGE”

180 PRINT:PRINT

190 PRINT SELECT (1-4)

200 K$=INKEYS$:IF K$="" GOTO 200
210 SEL=ASC(K$)-48

220 CLS

230 ON SEL GOTO 300,400,500.600
240 GOTO 100

LINES 110-190 print the menu on the screen.
LINE 200 sets the string variable K$ equal to the key pressed. If no

key is pressed, K$="" and Line 200 repeats. As soon as any number
or letter is typed, K$ is set equal to the key.

201

Lesson 23: Menus (continued)

I ————I————

LINE 210 sets the variable SEL equal to the value of the key. If [1]
is pressed, SEL=1; if [3] is pressed, SEL=3.

LINE 230 sends the program to the designated lines if SEL is equal to
1,2, 3, or 4. If any other number or letter is pressed; the program goes
to Line 100 to clear the screen and print a new menu.

Advanced Menu Module: Graphics

Graphics, Lesson 21, shows another example of this technique. Here,
the program design is the same and only the words on the screen and
the specific line numbers for the sections that follow have been
changed.

Here is the menu as it appears on the screen, followed by the actual
instructions used in the program:

GRAPHICS
1. GRAPHICS CHARACTERS

2. BILLBOARDS & SIGNS
3. ART & ANIMATION

SELECT (1-3)
100 REM ... GRAPHICS
20 CLS:PRINT:PRINT
300 PRINT ™ ... GRAPHICS
40 PRINT
50 PRINT ~ 1. GRAPHICS CHARACTERS”
60 PRINT 2. BILLBOARDS & SIGNS”
70 PRINT 3. ART & ANIMATION"
100 PRINT
110 PRINT SEIECT (l=3"

120 K$=INKEYS:IF K$="" GOTO 120
130 K=ASC(K$)-48

140 ON K GOTO 1030,2000,3000
150 GOTO 10

On Your Own

Use these two menus as examples and pick either the simple version
or the more advanced version and simply copy the instructions.
Naturally, you will use text and line numbers that match your
program design. A menu can begin your program, or it can be used
anywhere within. With commercial programs, several menus are
often used to direct people through many possible alternatives and
selections. In some programs, a menu can be called from anywhere in
a program to select a new set of options.

202 .

Lesson 24: Program Restarts
S B T e e B e e e P T 5, B A e R O

Lesson 24: Program Restarts

Program Endings with Automatic Restart

Many programs are designed with an automatic restart feature. This
option can be added to any program with a few simple instructions.

Go Again (Y,N)?

The first lesson in this book, Mathematician, has a program restart
option. After the program has calculated the answers, the computer
prints GO AGAIN (Y,N)? and waits for an input. Here is the complete
program:

10 INPUT "A"A

20 INPUT "B":B

30 PRINT "A+B="A+B

40 PRINT "A-B="A-B

50 PRINT "A *B=";A B

60 PRINT "A/B="A/B

70 INPUT "GO AGAIN (Y.N)?";K$
80IF K$="Y"GOTO 10

The lines that create the restart are Lines 70 and 80. Line 70 prints the
message on the screen and sets the string variable K$ equal to

the key you press. All INPUT instructions require the key,
and K$ is set equal to the key you type only after the key is
pressed. After this input, the computer compares K$ with the letter
Y. If K$="Y" the computer goes to Line 10 and the program begins
again. If any other key is pressed, the computer goes to the next line
in the program. Since Line 80 is the last line, the program stops if
the key pressed is not Y.

In Guessing Game, Lesson 3, the autostart feature is added in Lines 80
and 90. These additions to the program work exactly the same way

as the previous example, except that the text is changed to match the
new program. With these lines added, the computer prints TRY

AGAIN (Y,N)? and picks a new number for you to guess if your

answer is Y. Again, you must press the key after selecting
your answer. Here are the actual instructions used for this program
restart:

80 INPUT “TRY AGAIN (Y.N)":A$
90 IF As="Y" GOTO 10

These same instructions, with different line numbers, are used in Cipher
and Music Teacher. The programs, Area Calculator and Coloring Box,
simply print MORE (Y,N)? and restart if the input is a [¥]. This
technique is also used in Temperature Conversion to ask ANOTHER
CONVERSION (Y.N)? You can, of course, change the message within

203

Lesson 24: Program Restarts (continued)

_

the quotes to anything you like, such as: CARE TO TRY ONE MORE
TIME (Y.N)? or even PLAY IT AGAIN, SAM (Y.N)?

Restart Without the ENTER Key

In Hangperson, Lesson 11, the restart feature uses the INKEY'S
instruction instead of INPUT, as with previous programs. This
change makes the program easier to use because the ENTER key is
not required. Another change is necessary because of the DATA
statements that follow the main program. Here is the section of
Hangperson that creates the program restart:

420 PRINT “TRY AGAIN (Y,N)?”
430 X$=INKEYS:IF X$="" GOTO 430
440 IF X$="Y" THEN RUN ELSE END

The first change, the elimination of the ENTER key, is accomplished by
switching from INPUT to INKEY$ as a method for inputting the key
from the keyboard. In this version above, the computer prints the
question (with the question mark) and waits for a key to be pressed.
Immediately after a key has been pressed, the computer runs the
program from the beginning. In this program, RUN is used because

the command GOTO 10 would cause an error. The DIMENSION
statement in Line 20 is only used once in a program and cannot be
repeated.

The second change from previous restart instructions is the END
command. This provides an alternative to restarting the program
with RUN. If the program were to continue after Line 440, the
computer would read the subroutine starting at Line 500 and create
another error. With the restart instructions as shown, the computer
will run the program if the key pressed is and end the program if
any other letter or number is pressed.

In Car Calculator a similar set of instructions is used to restart the
program. Again, the ENTER key is not required and the program
repeats automatically if is pressed. With these instructions, the
computer clears the screen if you do not wish to continue with the

program:
700 REM ... MORE?
705 PRINT
710 PRINT “ ANOTHER CALCULATION (Y,N)?”
720 K$=INKEYS:IF K$="" GOTO 720

730 IF K$="Y" GOTO 100 ELSE CLS

The choice between INPUT and INKEY$ as a method for creating the

program restart depends on whether you want the person using your
program to have to press the key or not. INKEYS reacts
immediately to any key while INPUT waits for the enter key to be pressed.

204 -

Lesson 24: Program Restarts (continued)

—

In a program like Cipher, the response to the keyboard during the game is
immediate and INKEYS$ is used for all inputs to the program. In
programs where the user is pressing throughout, INPUT can be
used for program restarts because pressing after the Y.N
question would seem like a natural response.

INKEYS$ can be used when only one key is to be entered or when you
know exactly how many keys will be typed. If more than one key is to
be entered at one time and the length is uncertain, as with a name,
INPUT is required.

- : 205

Lesson 25: Time Delays
—

Lesson 25: Time Delays

Controlling Time Intervals with Counters and Sound

With many program designs, speed is an important consideration.
Having the software run as fast as possible is usually the goal. If you
are moving objects in a game, for example, you usually want them

to move quickly. With a few programs, however, a time delay or
pause is essential to their operating at the right pace or speed.

With your Color Computer, you create time delays whenever the SOUND
instruction is used. When you program the computer to create a
sound, the other activities in the program automatically stop until
the sound has finished, then the computer continues with the next
instruction. You can also create silent time delays by using a short
program loop.

Time Delay: Decision Maker

In Decision Maker, Lesson 8, a time delay is used to program a hold that
displays the image on the screen for a specific length of time. Here is
the single instruction that creates the delay:

90 FOR DLY=1 TO 500:NEXT DLY

After printing the answer on the screen, the computer completes this
instruction. If you look closely, you will see that it does nothing but
wait as the computer counts from 1 to 500. After this counting is
complete, the computer goes on to the next instruction in the program
and clears the screen.

This pause is added to the program so that the answer will remain on the
screen for a short time, and then be erased by the next few instructions.
The variable DLY keeps track of the count. The length of time the
program waits at Line 90 is set by the number in the instruction. If a
number larger than 500 is used, the delay is increased.

The SOUND instruction can also be used to create program delays
because the Color Computer does not run any other instructions while
the sound is being generated. This instruction creates a similar delay
by playing a random note for a duration of 25:

90 SOUND RND(100),25

In practice, either the program loop or the tone can be used with
identical results as far as the timing is concerned. With either method,
trimming, or slight adjustment of the timing interval, is done by
adjusting the number shown. For the program loop, changing the
number of times the loop cycles will change the time delay. For the
tone, adjusting the second number (25 in the example above) will
change the duration of the sound and the time delay in the program.

207

Lesson 25: Time Delays (continued)

Time Delay: Time Machine

In Time Machine, Lesson 12, a single instruction is used to slow the
program a specific amount so that the total program cycles in 0.1 second.
In this example, the variable used is T. and the complete instruction looks
like this:

90 FOR T=1TO 19:NEXT T

The number 19 was chosen so that the complete program would cycle at
the correct rate to create a clock. This delay is, of course, much shorter
than the delay in Decision Maker where the program cycles 500 times
before continuing.

The experiments in Lesson 12 show how a ticking sound can be added
to the clock. This addition slows the program down and requires an
adjustment in the time delay to keep the total program cycle time at
0.1 second. In fact, any change in a program will affect its overall
speed, including the addition of new instructions or extensions and
additions to existing lines.

208

Lesson 26: Inputs
P R S N e D e e e R T e A | T T e T

Lesson 26: Inputs
Using the Keyboard to Control Programs

The person using one of your programs will usually not be aware of the
instructions, the GOSUB's, and the details of your work. They will be
very aware of the input sections of your program, however, because
these sections determine how they interact with the computer. If you
handle the inputs well, your programs will be easy to follow. Inputs
that are awkward or unclear will immediately make your program,

and the computer, hard to use.

Keyboard inputs used with many programs in this book contain
messages or prompts that tell the user what to do next. Wherever
possible, the ENTER key is not required and the computer responds
immediately, like a piano keyboard.

Simple Inputs: Mathematician

In the first lesson, two variables are used in the program to represent
the two numbers to be added, subtracted, multiplied, and divided. The
program steps for setting these variables look like this:

10 INPUT "A"A
20 INPUT "B";B

When these instructions are read by the computer, the letter inside the
quotation marks is printed, followed by a question mark. When a
number is typed and the key pressed, the computer prints the
input on the screen and sets the variable equal to the number.

Any message may be written inside the quotation marks and printed
on the screen. These instructions would be even more clear if they
were written like this:

10 INPUT "NUMBER A
B

A
20 INPUT “"NUMBER "B

You may want to go even further in telling the user how to interact
with your program and print complete instructions, like this:

10 INPUT “TYPE ANUMBER FORA, T
HEN PRESS THE ENTER KEY™A

15 PRINT
20 INPUT “"NOW INPUT A NUMBER FOR
B AND PRESS ENTER AGAIN":B

When these instructions are run, the screen will show:

209

210

Lesson 26: Inputs (continued)

TYPE A NUMBER FOR A, THEN PRESS
THE ENTER KEY? 5

NOW INPUT A NUMBER FOR B AND
PRESS ENTER AGAIN? 6

Notice that the extra spaces after the word AND in Line 20 are used
to space the words correctly on the screen and that the computer
automatically adds a question mark after the message. While this
amount of on-screen instruction would be ideal for someone using a
computer for the first time, this could be too much for an experienced
user and might get boring if you repeated this amount of information
for many inputs in a program.

Input Single Letter: Go Again?

The easiest way to program the computer to print a message and
get a letter from the keyboard is with this instruction, as used in
Mathematician:

70 INPUT "GO AGAIN (Y,N)":K$

The computer will print the message inside the quotes and wait for you
to type one or more keys and press [ENTER|. The string variable K$
will contain the key or keys you type.

You can eliminate the ENTER key by using INKEY$. First print a
message telling the user what to do, then get an input from the
keyboard with INKEYS$. Since INKEY$ reads the keyboard
immediately, you will need a program loop to scan the keyboard until
a key is pressed. These instructions are used with many programs to
get a single letter:

10 PRINT "GO AGAIN? (Y.N)”
20 K$=INKEY$:IF K$="" GOTO 20

Notice that Line 10 prints the message and that Line 20 cycles or
repeats until a key is pressed. If no key has been pressed, K$ is a
blank (** ”) and Line 20 repeats over and over again.

The next line in your program will tell the computer what to do with
the input. In the above example, Y could send the computer back to
the beginning and any other letter could end the program. While this
example is often used to create program restarts, this technique can
also be used for many other applications.

The dollar signs after INKEYS$ and K$ tell the computer that the
variable can be any key on the keyboard — a letter, number, or
punctuation mark.

Lesson 26: Inputs (continued)
e e . S PO O O e S A, S e s e e e S s I e T S T el T

Input Single Digit Numbers

If your program requires a numerical input, and you know the total
number of digits, you can write instructions using INKEY$ and
eliminate the ENTER key. This simplifies the input for the user and
makes interaction with the program faster and easier.

In using INKEY$ to get a key from the keyboard, you must convert
the string variable to a number. These instructions input a single key
as a string variable and convert the input to a number. If the key
pressed is [1], for example, the string variable K$ will be set to “1”
and the number variable A will be set to the number 1:

10 PRINT "NUMBER A="
20 K$=INKEYS$:IF K$="" GOTO 20
30 A=ASC(K$)-48

This short program inputs a single key and sets A equal to the
ASCII value of the key minus 48. Since the ASCII value of the
numbers is their number plus 48, this program automatically sets
the variable A equal to the number typed.

The reason for this complicated dance with INKEY$ and ASCII
values is to get numbers from the keyboard without having to press
ENTER. To convince yourself that this works, run the program, type
any number on the keyboard, and print the value of A.

If you would like the computer to echo or verify the number you type,
add a semicolon to Line 10 so that the printing will continue on that
line, then add a print instruction:

10 PRINT "NUMBER A=";

20 K$=INKEYS:IF K$="" GOTO 20
30 A=ASC(K$)-48

40 PRINT A

Here is Mathematician, rewritten so that the response is immediate
and the ENTER key is not used. As you can see, the programming

is much more complex than in the earlier version. Enter this program
and see that it is much faster and easier to use, then you can decide

if this programming technique is worth the additional effort.

10 PRINT "NUMBER A=";

12 K$=INKEYS:IF Ks="" GOTO 12
14 A=ASC(K$)-48

16 PRINT A

20 PRINT “NUMBER B=";

22 K$=INKEY$:IF K$="" GOTO 22
24 B=ASC(K$)-48

26 PRINT B

30 PRINT "A+B=";A+B

211

Lesson 26: Inputs (continued)

40 PRINT "A-B="A-—
50 PRINT "A+*B="A*
60 PRINT "A/B="A/
70 PRINT “"MORE? (Y.N)”

72 K$=INKEY$:IF Ks="" GOTO 72
80 IF K$="Y" THEN CLS:GOTO 10

B
B
B

Notice that this program only allows single digit numbers for A and
B. If you wish to input numbers larger than 9, another step must be
added to the program.

Input Multi-Digit Numbers: Math Teacher

The easiest way to input numbers such as 123 and 45654 is with the
INPUT instruction, like this:

10 INPUT "NUMBER PLEASE";N

The variable N will be set to whatever number you type (up to nine
digits long), after the key is pressed. In Math Teacher and
similar programs, pressing after each answer simply does not
work because students will soon get tired of it.

These instructions in Math Teacher compare the number of digits
typed on the keyboard with the number of digits in the answer. When
they are equal, the input is complete and the computer checks to see if
the answer is correct. If the correct answer is 6, for example, the
program will compare the input as soon as any key is pressed. If 23 is
the correct answer, the computer will wait until two keys have been
pressed before comparing the input with the correct answer.

400 REM ... INPUT MODULE
410B$=""

420 AS=INKEY S

430 IF As="" GOTO 420

440 PRINT AS;

450 B$=BS$+AS$

460 IF X>9 AND LEN(BS$)<2 THEN 420
470 IF X>99 AND LEN(B$)<3 THEN 420

In this example, the variable X is equal to the correct answer. The
numbers typed on the keyboard are combined until the total number of
digits is the same as the answer. With this approach to program
design, the student can enter answers quickly, with the computer
responding immediately to the input.

212

Lesson 26: Inputs (continued)
B e R B R S S T MR IR S T i R S E AR e T R e e < R R TR T ST 2 S G TR D 2R o e R

Input Word: Hangperson

Whenever you wish to input a word, such as the code word in
Hangperson or the player’s name in a game program, the user will
have to use because the computer will have no way of
knowing when the input is complete. If you add a reminder to press
[ENTER], there will be no possibility that the user will type a word and
then wait, wondering why the computer isn’t doing anything.

Here is how this reminder is added to the cassette version of
Hangperson. You can use this approach whenever your programs
require that the [ENTER| key be used:

10 CLS:PRINT "TYPE CODE WORD. PR
ESS ENTER KEY”
12 INPUT W$

On Your Own

The methods you use in creating inputs for your programs will influence
how people feel about your software. If the inputs make sense, are

easy to use, and operate immediately whenever possible, your

programs will help people use computers in a friendly, secure way.

The reverse, inputs that are confusing and slow, will make your
software seem badly designed, even if the concepts are brilliant.

An important question to ask yourself in evaluating your own work is
whether the choices for action at each point in your program are clear
or not. It is perfectly fine to create situations wherein the choices are
hard to make, as in a strategy game, but there should be no difficulty
at all in understanding what the choices are.

Another point to consider is the consequence of an incorrect entry at
any point in your program. In the Advanced Menu Module, for
example, the screen blinks if you enter any letter or number that
doesn’t match the choices shown. This non-destructive interaction
when someone types a wrong key is a gentle acknowledgement of a
mistake. This is far better than doing nothing with a wrong entry
and having the user sit, wondering what happened.

213

Lesson 27: Music and Sound Effects
O P Y e o e A s B S S e i S A o O e e e e e T T O] Wik T P e e T 7

Lesson 27: Music and Sound Effects
From Bach to BANG!

Music, beeps, and other sound effects are used in many programs in this
book. Except for Music Teacher and Player Piano, these sounds are

not required and are added just for effect. This simple addition of a

few beeps here and there in your programs can make a big difference.
People have been hearing computers make beeps and clicks in science
fiction movies and TV space operas for many years. So don’t overlook
the possibility of sound effects, or even music, when you are adding

the finishing touches to any program.

Music is discussed in Lesson 22, where you can use the Player Piano
model to create and play tunes. Adding your compositions to any
program is simply a matter of copying the data, as described in the
lesson. The other sounds produced by the Color Computer are
“music” in that they are made up of single-frequency tones. Adding
randomness to the pitch and the duration, however, can produce a
wide range of “computer” sounds. Whistles and shrieks result when
you change the frequency in a program loop.

Music: Cipher

If you have played the Cipher program and broken the code word, you
have already heard the victory tune at the end. This tune was first
developed on Player Piano. After playing a tune on the piano and
editing it until it is correct, you can transfer the tune to any program
by copying the numbers on the screen.

This process is described in Lesson 23. In Cipher, the tune looks like this
in the program listing:

600 REM ... SCORE BOARD . ..
610 PRINT

620 IF R<P GOTO 300

640 SOUND 126.6

642 SOUND 148.4

648 SOUND 126.2

650 SOUND 132.2

652 SOUND 148.2

Feedback: Sorting

In Sorting, Lesson 14, sounds are used to help you see what is happening
as the program runs. A short beep is played each time the computer
sorts one of the items on the screen. As the process continues, less

and less time is required to sort each item and the beeps get faster.

215

Lesson 27: Music and Sound Effects (continued)

_

Audio feedback like this can help you follow the progress of any soft-
ware if you place instructions for different sounds at different places
in the program. To find out how many times a subroutine is being
called, for example, you can add a beep before the RETURN and just
listen. In large programs with many branches, different notes in each
section can be a diagnostic tool.

Music to Think By: Decision Maker

You can use random numbers to create a wide variety of “computer
sounds.” In Lesson 8, the Music to Think By experiment adds a
computer sound effect with these lines:

35FOR S=1T0O 10
36 SOUND RND(100)+150.RND(6)
37 NEXT S

The random number generator in your Color Computer is used twice in
Line 36. The number controlling the frequency or pitch of the sound

is equal to RND(100)+150. This is a random number from 1 to

100, added to 150. The net result is a random frequency number

from 150 to 250. The range of frequencies and the variation in

timing were selected because the effect sounds, to the designer, like

a computer thinking. Changing any of the numbers in Line 36 will
create a different effect. The right modification would probably create
something you would prefer.

If you would like to experiment with computer sounds, try this short
program that lets you change the numbers in Line 36 and hear the
results.

10 REM ... COMPUTER SOUNDS
20 CLS

30 INPUT A.B.C.D

40 FOR L=1TO D

50 SOUND RND(A)+B.RND(C)

60 NEXT L

70 PRINT A;B;C.D

80 GOTO 30

When you run this program, enter these numbers: 100, 150, 6, 10. This
will duplicate the effect used in Decision Maker. To copy the frequency
range used for the robot in Graphics, Lesson 7, input the numbers 10,
230, 3, 10. The robot speech uses an additional delay between the
sounds.

After the sound stops, enter another set of numbers and hear the
change. If your choices result in numbers that are greater than 255,
the program will stop and print: FC ERROR IN 50.

216

Lesson 27: Music and Sound Effects (continued)
o s R S e R R S I e T HR R L S e S T S R e N R e B e [S R A s MR GO

Dribble: Music Teacher

‘In Music Teacher, a special sound effect was programmed to signal a
mistake. It is easy to program the computer to make a loud buzz, of
course, but the sound effect was created for a different result. The
design goal was to show that the particular note that was played does
not work, rather than simply saying: “You blew it!”

The instructions below are used in Music Teacher to rapidly lower the
frequency of the note that is not correct. This shows the note, not just
the player, to be a wrong choice at this time. This dribble effect will
sound slightly different for each note on the scale.

300 REM ... OOPS! ..,
310 FOR L=F-8 TO 1 STEP -8
320 SOUND L1

330 NEXT L

To hear this effect, load the Lesson 7 cassette and make a mistake, or copy
the program above. Simulate the wrong note by inputting a value for
F, like this:

10 INPUT “FREQUENCY NUMBER (1-255)";F

Animated Speech: Graphics

Creating a computer voice for our robot in Graphics, Lesson 7, required
a continuous loop to create the sound as well as the opening and
closing of the robot’s mouth. Here is the complete section that produces
the effect:

3200 REM ... SPEAK

3210 T=RND(300)

3220 FOR DLY=1 TO T:NEXT DLY
3230 PRINT @5%32+15."=";

3240 SOUND RND(10)+230.RND(3)
3250 PRINT @5%32+15,"-";

3260 GOTO 3200

If you clear the screen and run this program you will see the robot’s
mouth near the center of your screen and hear the speech sounds. It

is easier to load the Lesson 7 cassette, select [3] from the menu, and see
the complete picture.

On Your Own

In helping you create music and sound effects, the computer can be a
valuable instrument. A key in learning to control the wide range of
possibilities is to write short programs that let you experiment with
ideas and hear the results right away. With this feedback, you can
explore ideas or compositions and use the computer to play them.

217

Lesson 27: Music and Sound Effects (continued)

—

Computer music itself is a field that may interest you. While this
book has used music as an add-on to programs, a complete compo-
sition played by a computer is well within the capabilities of your
Color Computer. Many modern compositional forms may be written
in software and played by computer. Randomness can be used in
programs to create many kinds of variations in pitch and tempo. Or
you may be more interested in building an instrument you could play,
similar to Player Piano.

218

Lesson 28: Rounding Off Numbers

Lesson 28: Rounding Off Numbers
Making the Digits Fit and Printing Dollars and Sense

The computer often creates answers such as 21.1111111 or 266.666667
when dividing two numbers. The computer automatically rounds off
these answers to nine digits. With programs like Temperature
Converter and Interest Calculator, it is much better to round off
answers like these. When printing dollar amounts it is also a good
idea to round off to the nearest penny, rather than show a balance

of $13.33333.

The Integer Function

When the integer function is used, the computer retains only the integer
or whole number and discards any fractional part.

Number Integer
1 1
1.123

11.4 11

21.899 21

.955 0

The integer of any number is created with this instruction, where N is
the number:

N=INT(N)
Itis more common to consider a fractional part of a number and to round
off the answer. That is, if the fraction is .5 or more, the next highest

number is used. To duplicate this with the integer function, just add
0.5 to the number before the integer is calculated.

N=INT(N+.5)

With this change, the numbers from the previous table look like this:

N INT(N) INT(N+.5)
1 1 1
1.123 1
11.4 11 11
21.899 21 22
955 0 1

219

Lesson 28: Rounding Off Numbers (continued)

_

Nearest Degree: Temperature Converter

In Temperature Converter, the answers are rounded off to the nearest
degree. This is done by adding .5 to the answer and creating the
integer of the result. Both conversion sections of this program use
the same design, like this:

100 INPUT “"HOW MANY DEGREES F";F
110 C=5/9%(F-32)

115 C=INT(C+.5)

120 PRINT F:-"DEGREES F =";C;"DEG
REES €

In Line 110 the variable C is set equal to the temperature in celsius.
The next line rounds this value off to the nearest degree. It would be
possible to round off the value to the nearest tenth of a degree by
substituting this instruction:

115 C=INT(C+10+.5)/10
Now the value is multiplied by 10, rounded off to the nearest integer, and

divided by 10 again. The effect will be to round off all values of C
to the nearest .1 degree, as shown below:

N INT(N) INT(N+.5) INT(N*10+.5)/10
1 1 1 1.1
1.123 1 1 1.0
11.4 11 11 11.4
21.899 21 22 21.9
955 0 1 1

The number 10 in Line 115 creates a final value that is rounded off to one
decimal place. Replacing 10 with 100 creates a value that is rounded

off to two decimal places. Similarly, you can increase the number of
zeros in the number used in Line 115 and increase the number of
decimal places in the final answer.

Nearest Penny: Interest Calculator

A common requirement for business programs is to calculate and print
results to the nearest penny. Since this represents a number of
dollars, accurate to two decimal places, the number 100 is used to
round off the answer. This instruction from Interest Calculator can

be used to round off the number N to two decimal places.

INT(N*100+.5) /100

While maintaining your accounts to the nearest penny may seem accurate
enough, business programs often keep dollar amounts to the nearest
mill, or one tenth of a cent.

220

Lesson 29: Scoreboards

Lesson 29: Scoreboards
Who Won?

A report card or progress report can be an important part of any educa-
tional program. Similarly, almost any game program, whether it is a
strategy game or a high-speed action game, can benefit by the addition
of a report or scoreboard at the end. The format for either of these
reports is similar to the Menu Module in that a message is printed on
the screen, showing the status of the program. The question, GO

AGAIN (Y,N), can also be included in the display.

Report Card: Math Teacher

The scoreboard in Math Teacher is used to show the student’s progress
in two ways. After 20 problems have been answered, the report card
shows the number of correct answers and the skill level. Here are

the actual instructions used in Math Teacher:

700 REM ... REPORT CARD

710 CLS:PRINT

720 PRINT ~ ... REPORT CAR

D .. .":PRINT

730 PRINT ~ YOU GOT";20-G

740 PRINT OUT OF 20 CORRECT”
PRINT

750 PRINT YOUR SKILL LEVEL |
S";S:PRINT

760 PRINT SAME PLAYER GO AGA
IN (Y,N)?"

770 YS=INKEYS:IFY$="" THEN 770

780 IF Y$="Y" THEN CLS:GOTO 20

This format is very similar to the Menu except that two variables are
used to print the correct results. The variable G is used to store the
number of wrong answers. The number 20—G in the Report Card is
the number of answers that were correct. The variable S stores the
skill level. This number is dynamically adjusted by the program to
match the difficulty of the problems to the student’s ability.

If a student misses one problem and has a skill level of five, the
scoreboard will show:

REPORT CARD

YOU GOT 19
OUT OF 20 CORRECT

YOUR SKILL LEVEL IS 5

SAME PLAYER GO AGAIN (Y,N)?

221

Lesson 29: Scoreboards (continued)
.

With a similar design, you can add a scoreboard to show the results of
any program where variables in the program change. Just use print
instructions to write the messages on the screen, with variables
representing the quantities that change. The program restart line

can also be added to the report card, as shown in Lines 770 and 780

in this example.

Scoreboard: Multi-player game

A typical scoreboard for a two-player game could look like this after
each round:

SCOREBOARD . ..

PLAYER GAMESWON TOP SCORE
TOM 3 100
DICK 2 121

HARRY 1 856

SAME PLAYERS GO AGAIN? (Y.N)?

In this example, you would need an input section at the beginning of

the program to input the players’ names, and variables for storing the
number of wins and highest score for each player. As with any program,
the names you choose for the variables are up to you. Here are some

suggestions:
First player’s name P1$
Second player’s name P2s
Third player’s name P3s
First player’s wins W1
Second player’s wins W2
Third player’s wins W3
First player’s max. M1
Second player’s max. M2
Third player’s max. M3

You can easily create scoreboards that show the status of the players
and any other information you would like to display. If you design
the scoreboard early in the programming of your game idea, the
variable names you select can be picked to make their function clear.

222

Lesson 30: Dynamic Debugger

Lesson 30: Dynamic Debugger

Finding and Fixing Problems

If you try designing and writing your own program, you will find sooner
or later that it is easy to forget how your own software works. A
program that was perfectly clear to you when you wrote it can become
a mystery when you look at it after a day or two. One way to find out

how any program works is to run the program, look at all the variables,

and see how they change and what they do.

This lesson shows you how to create and use the Dynamic Debugger,
a powerful tool you can use to take the mystery out of almost any
program. You can use this tool to understand and be more clear about
your own work, or to figure out what someone else’s software does.

Use Math Teacher as an example to see how the Debugger can help you
understand how a program works. Begin by loading the program

from the Lesson 17 cassette. Run Math Teacher and become familiar
with what it does.

Mark the Variables

As you can see, this program uses many variables to keep track of the
numbers used in the problems, the correct answers, the number of
wrong answers, TRM time delays, and many other factors. Go through
the listing and mark every variable used, including all the string
variables with dollar signs.

Write a Custom Debugger

The Debugger is a short program you put in the computer in addition
to the program you are trying to understand. The Debugger must

begin with a line number that has a higher line number than any line in
the main program. Since the last line in Math Teacher is Line 780, this
Debugger can start at Line 1000.

To create a custom Debugger, just write an instruction to identify and
print each variable in the program. Here is an example using Math
Teacher:

1000 REM ... DYNAMIC DEBUGGER
1010 PRINT “S".S
1020 PRINT "E"E
1030 PRINT “L";L
1040 PRINT "A"A
1050 PRINT "B";B
1060 PRINT “X";X
1070 PRINT "G".G

223

Lesson 30: Dynamic Debugger (continued)
_

1080 PRINT “T7;T
1090 PRINT “VAL(BS$)";VAL(BS)
1100 PRINT “LEN(BS$)";LEN(BS$)

To check this program and see what it does, just type @@@]D

m@@@ and run the Debugger. Your screen will show a printout of all
the variables and their current contents, like this:

GOTO 1000
SEB

E O

L 1

A 2

B 1

X 2

G B3

T 114
VAL(BS$) O
LEN(BS) O
OK

The values you will see will depend on the status of Math Teacher in your
computer. In the example above, the skill level S is 5, the two

numbers selected for the problem A and B are 2 and 1, the correct
answer X is 2, and so on. At first, you may not know exactly what

all the variables stand for. The point of the Debugger is that you can

use the program itself to see how the variables change, and from this

you will be able to actually see what they do.

Experiment 1: Problem and Answer Check

The program description and the flowchart with Lesson 17 point out that
the variables A and P store the numbers in the problem, and that

the variable X stores the answer. Begin using the Debugger to find
out if this is actually happening or not.

1. Run the program as usual.

2. When the first problem appears on the

screen, press the [BREAK]| key to stop
the program.

3. Type [GOMOIJAI[O]O]0] to run the

Debugger program.

The printout on your screen will now show the first problem and the
information in all the variables. This lets you see what is happening
in the program at the point where the first problem is shown on the
screen. You will see that the variable A contains the first number in
the problem, variable B contains the second number, and variable

X contains the answer.

224

Lesson 30: Dynamic Debugger (continued)

The results you see will depend on the numbers chosen for the first
problem. In the following example, the computer happened to pick
5 — 2 = as the first problem, with these results:

5-2-=
BREAK IN 425
OK

GOTO 1000

In this example, A=5, B=2, and X=3. Your results will probably be
different, but the variables A, B, and X should match the problem
on the screen exactly.

When you are satisfied that the variables match, run the program again
and use the Debugger to check A, B, and X with a different problem
on the screen. Each time you run the program, the variables should
match, as before. This shows you that these variables are doing what
you expect them to and that the program is running correctly, up to
this point.

Experiment 2: Problem Counter Check

Now check and verify that the program counter is working correctly.
This counter is the variable L. In Line 20, L is used as the loop counter
to keep track of the number of problems that have been printed on the
screen. At the beginning, L should be equal to 1. As the number

of problems increases, L should also increase to show the number of
the next problem. Notice the value of L on the screen. In the first
experiment, L is 1 because you stopped the program with the first
problem on the screen. Now check L with this technique:

1. Run Math Teacher and answer the
first 3 problems, leaving problem

number 4 on the screen.

2. Stop Math Teacher with [BR EAK].

3. Run Dynamic Debugger with [G][O][T][O][]
(@[oJ[ol[a].

225

Lesson 30: Dynamic Debugger (continued)

Again, your screen will show different values for other variables, but
L should be equal to 4, like this:

7+6 =
BREAK IN 430
OK

GOTO 1000
S 8

E O

L 4

A7

B 6

X 12

G 3

T 143
VAL(BS) O
LEN(BS) O
oK

As you can see from your printout, A, B, and X match the problem and
the answer, as before, and L is equal to 4.

Experiment 3: TRM Counter Check

Variable T is used to keep track of the time required for each answer.
Check the program and verify that T actually relates to the answer
time.

1. Run Math Teacher.
As soon as the first problem is

displayed, press |BREAK].

2. Use Debugger to find the value of
T and remember what the value is.

3. Run Math Teacher again.
This time, wait for a few seconds
before pressing [BREAK]. You have
now frozen the program in a
different condition, with a longer
time elapsed after the problem was
first displayed.

4. Use Debugger again to see the
value of T.
If the time delay before pressing
was longer than before, the
value of T should be higher.

226 =

Lesson 30: Dynamic Debugger (continued)

5. Try this experiment again, waiting
for about a minute before pressing
BREAK], stopping the program and
the timer.

The value of T should increase in
proportion to the time elapsed.

You can repeat this experiment as many times as you like to check the
operation of the TRM timer. The variable T is incremented in Line
425, which is part of the Input Module. As long as the program is
waiting for an input, T will contiue to increase. When any key is
pressed for the answer, the value of T is saved and used later to
adjust the skill level.

On Your Own

You have used Math Teacher to show how the Debugger can help you
see what is happening in a program. Notice that you can stop at any
point with and use Debugger to see exactly what is going on.
With patience, this programming tool can be a valuable aid in under-
standing other people’s programs, finding out what any variable in a
program actually does, and even helping you recall and understand
how your own programs work. In situations where any software just
doesn’t operate the way you expect it to, Debugger is your key to
discovering the truth. After you are clear about what is happening,
you can choose to make any changes or additions. After each modifi-
cation, Debugger will show you the results.

This technique can be used without writing a complete program for
printing the variables. If you only wish to check the operation of the
timer, for example, you could use to stop the program at the
point you wish to examine, and simply type: PRINT T. Where more
than one variable is involved or when you want to understand all
aspects of a program, writing a complete Dynamic Debugger is well
worth the time required.

227

Buzzwords

Buzzwords

Many conventional words have special meaning when computers are
the subject being discussed or written about. This dictionary of
computer terms can help you understand some of these words and
help you use them effectively. Not all computer terms are included,
but the common terms used in this book are described below.

ARRAY — a numbered sequence of variables that can hold integers.

BASIC — a computer language designed to be easy to use and understand.
The beginner’s all-purpose symbolic instruction code.

CHARACTER — anything that will print in a single space on the screen,
including numbers, letters, punctuation, and graphics symbols.

COMMAND — a direction to the computer.

COMMAND MODE — a condition that exists when the computer is
waiting for you to enter a command or a line number. The message
OK appears on the screen whenever you are in command mode.

CONDITION — a comparison that can be true or false. Conditions
are tested and evaluated in |F statements.

DIMENSIONING — automatically sets aside space and defines
boundaries for an array.

GRAPHICS CHARACTER — a symbol used to create designs and
patterns on the screen.

INSTRUCTION — a direction given to the computer. If a line number
is used before an instruction, the instruction becomes part of a
program when is pressed. If there is no line number, an
instruction is carried out immediately when is pressed.

INTEGER — a whole number, without any fractional part, in the range
0of-32768 to 32767. Note: Do not use commas or periods with
numbers.

LETTER — the characters from A to Z.

LINE — anything you type on the keyboard. Pressing [ENTER]| ends
a line.

LINE NUMBER — the number in front of an instruction which
indicates its position in a program.

MACHINE CODE — a group of instructions, not in BASIC, which are
read directly by the computer chip. To write machine code instruc-
tions, you need an instruction set for the computer chip and special

programming techniques, using POKE.

229

Buzzwords (continued)

MEMORY — where the computer stores numbers, strings, arrays,
instructions, complete programs, and whatever is currently being
displayed on the TV screen. These all use space in memory. With more
memory, your Color Computer will be able to hold and run longer
programs.

MESSAGE — an informative note printed on the screen for the benefit
of the user of a program.

NUMBER — the characters from O to 9, individually or combined.

PROGRAM — a set of lines with line numbers. A program can be
entered from the keyboard or loaded from tape.

PUNCTUATION — the characters $: ? () — + = / = > <

SUBROUTINE — a section of a program ending with RETURN and
called by GOSUB.

VALUE — the result that can be printed. The value of 10 is 10. The
value of 2+3 is 5. The value of A is the number stored in the variable
A. The value of AS is the character or characters stored in AS.

VARIABLE — a section in the computer’s memory that holds informa-
tion. All variables have names such as A, AS$, BOB, or X(1).
Variables can easily be changed. Number variables each hold a
number. String variables hold one or more characters. Arrays hold
one or more number variables. Variable names may be of any length;
however, only the first two characters are significant with this
computer.

230

Index

Alarm clock, 76

Amling, Jim, ii

Area Calculator: Lesson 9, 55-59
Art and animation, 186

Arrays, 81, 89-90, 141-142
ASC(K$), 34

ASCII numbers, 96-97, 117, 139-140, 156, 163, 184
Autostart, 19

Auto average, 26

Auto repeat, 47

Average Calculator: Lesson 4, 23-27
Billboards and signs, 184
Branching, 49-52, 126-127, 173-179
BREAK, 4

Buzzwords, 229

Calculators, 55-59

Car Calculator: Lesson 20, 173-179
CHRS, 29, 32-34, 69-70

Cipher: Lesson 16, 113-122

CLS (clear screen), 19

Colon, 24, 73-74

COLOR, 67-69

Coloring Box: Lesson 11, 67-71
Command mode, 9, 122
Comparison (>, <, =), 17-18
Comparison (< >), 73-75
Compounding interest, 61-64

Coin Flipper: Lesson 2, 11-15
Counting Machine: Lesson 6, 37-43
Data Processing, 89-98

Decision Maker: Lesson 8, 49-52
Decisions (IF/THEN), 11, 12
Debugging programs, 223

Dice simulation, 80

DIM (dimension), 81, 89, 115, 197
Distance calculator, 173

Division by zero, 7

DLY (delay), 49, 51, 160, 207-208
Double loops, 67-69

Dynamic Debugger: Lesson 30, 223-227
Dynamic sorting, 94-95

ENTER, 1

Error message, 1, 7, 41
Expressway: Lesson 5, 29-34

FC ERROR, 41

Feedback, 215-216

Flash cards, 127

Flowchart, 10, 16, 21, 28, 35, 44, 48, 53, 60, 66, 72, 78, 88, 100-102, 111-112, 123,
135-137, 151-154, 168-171, 181

Index

231

Index (continued)
_

Formulas, 23, 55-59, 173-175
FOR/FOR, NEXT/NEXT (double loops), 67-69
FOR/NEXT, 23-26
FOR/NEXT/STEP, 37-43

Game design, 113, 139, 146-147, 155-167
GOSUB, 157-167

GOTO, 2

Graph, 83-87

Graphics characters, 184
Graphics: Lesson 21, 183-192
Guessing Game: Lesson 3, 17-20
Hangperson: Lesson 18, 139-150
Help, i

Halt!, 15

How It Works, ii

IF/THEN, 7, 11-14, 17

INKEYS$, 34, 49-50, 77, 117, 156-157, 204-205
INPUT, 5-7, 19, 55-59, 144, 203-204
Inputs: Lesson 26, 209-213

Input module, 129-130

Input note, 156

Input word, 141

Instruction, 1

INT (integer), 41, 61-65, 219-220
Interest Calculator: Lesson 10, 61-65
Introduction to Computing, 1-4
JOYSTK(N), 29, 31, 34
Kaleidoscope: Lesson 7, 45-47
LEN (length of a string), 140
LET, ii

Line numbers, ii

LIST, 2, 3, 52

Loop, 13, 23-26, 37, 42
Mathematician: Lesson 1, 5-9
Math Teacher: Lesson 17, 125-134
Menus, 106, 177, 183

Menus: Lesson 23, 199-202
Messages, 7

MID (character in a string), 140
Multiple lines, 24, 73-74

Music and Sound Effects: Lesson 27, 215-218
Music notation, 161-162, 198
Music Teacher: Lesson 19, 155-167
Musical instruments, 193

Nelson, Ted, 43

NEW, 4

Not equal (< >), 73-75

O andO,i

ON/GOTO, 49-50, 52

Parenthesis, 9

Pinball, ii

Player Piano, 193

232

Index (continued)

“

POINT (B,V), 29, 31 ¢

PRINT, 1-3, 20

PRINT @, 14, 49, 70-71, 73-75, 82-86
PRINT#-2, 65

PRINT TAB, 29, 32, 33

Printer option, 65

Printing money ($), 65

Printing tables, 61-63

Probability, 46

Probability: Lesson 13, 79-87

Program, 1-2

Program Restarts: Lesson 24, 203-205
Prompts, 104-105

Random numbers, 11-15, 19-20, 49-51, 79-87
READ/DATA, 148-150, 186, 188

REDO, 8

Report card, 133-134, 221-222

RETURN, 157-167

Reverse video, i ;

Rounding off, 61-65, 103-104, 175-176
Rounding Off Numbers: Lesson 28, 219-220
RUN, 3

Scoreboards: Lesson 29, 221-222
Semicolon, 2, 14, 32

SET(H,V,C), 45-47

Scientific notation, 8

SHAPE, 67-69

Skill level adjustment, 130-131

Sorting: Lesson 14, 89-99

SOUND, 25-26, 29, 32, 40, 47, 51, 75, 87, 120, 144, 155-167, 188, 193, 195-197,
207, 215-218

Spaces between letters and numbers, i
Space sounds, 42

Speed calculator, 175

STEP, 37

String manipulation, 139

Stop watch, 77

Subroutines, 157-158

Tables, 61-63

Temperature Converter: Lesson 15, 103-110
Time calculator, 174

Time delays, 73-77, 160, 188

Time Delays: Lesson 25, 207-208

Time Response Monitoring, 132-134, 226
Time limit, 32

Time Machine: Lesson 12, 73-77

Timer, 76

Variables, 6, 12, 18, 223

233

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
“AS IS” BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respectto any liability, loss ordamage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but notlimitedtoanyinterrup-
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or
computer programs.

NOTE: Good data processing procedure dictates that the user test the
program, run and test sample setsofdata,and run the systemin
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER’S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'’S computer (if the software allows a
backup copy to be made), and shall include Radio Shack’s copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack’s system and applications soft-
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License:(paragraphs A, B, and C) shallalso be applicable
to third parties purchasing such software from CUSTOMER.

| T |

RADIO SHACK IC) A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM UK.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE. N.S.W. 2116 5140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	Front Cover
	Copyrights
	Title Page
	Table of Contents
	How to Use Computer Learning Lab
	Section 1
	Introduction to Computing
	Lesson 1 : Mathematician
	Lesson 2: Coin Flipper
	Lesson 3: Guessing Game
	Lesson 4: Average Calculator
	Lesson 5: Expressway
	Lesson 6: Counting Machine
	Lesson 7: Kaleidoscope
	Lesson 8: Decision Maker
	Lesson 9: Area Calculator
	Lesson 10: Interest Calculator
	Lesson 11: Coloring Box
	Lesson 12: Time Machine

	Section 2
	Lesson 13: Probability
	Lesson 14: Sorting
	Lesson 15: Temperature Converter
	Lesson 16: Cipher
	Lesson 17: Math Teacher
	Lesson 18: Hangperson
	Lesson 19: Music Teacher
	Lesson 20: Car Calculator
	Lesson 21: Graphics
	Lesson 22: Player Piano

	Section 3
	Lesson 23: Menus
	Lesson 24: Program Restarts
	Lesson 25: Time Delays
	Lesson 26: Inputs
	Lesson 27: Music and Sound Effects
	Lesson 28: Rounding Off Numbers
	Lesson 29: Scoreboards
	Lesson 30: Dynamic Debugger

	Buzzwords
	Index
	Back Cover

